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ABSTRACT

In composite materials, the presence of inhomogeneities alters the
types of stress singularitieé at tips of cracks and slip bands. The plastic
strain concentrated at the crack tip in a nobtch-tough matrix is essential in
determininé the critical fracture load of composite materials.

The concept of continuously distributed dislocations is used in the
pfesent investigétion. A unified description of both cracks and slip bands
is reached by using the dislocation model.

The elastic-plastic medium under consideration is made of two half-
planes perfectly bonded at the interface. External stresses are uniformly
applied at the boundary far from the dislocation arrays. It is found that
the effective stresses on dislocations are uniform in the vicinity of the
interface. The magnitude of these effective stresses depends on the elastic
constants of the constituent phases. The effect of inhomogeneity also causes
stresses to be induced at the phase boundary. These stresses decay exponen-
tially with the distances from the interface and can be the primary cause of
splitting at interfaces.

For Mode IIT cracks of finite length, L, 1lying perpendicular to the
phase boundary, the crack tip stress singularity in the neighboring phase

is of the type (%)a. p denotes the distance from crack tips and
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The intensity of the resultant stress is smaller than that of a semi-
infinite crack by the factor (1 - a). This finding is also valid for the
case where screw dislocat10n§ pile up against the interface. Yor Modes I
and IT cracks, the crack tip stress singularity can be found by employing
numerical procedures.

For a Mode IIT crack crossing a phase boundary, the stress singular-
ities at the crack tips behave as if the crack tip were imbeded in a ho-
mogeneous medium. The stress intensity at the crack tip in the compara-
tively harder phase is higher than that in the softer phase.

The above crack model can be modified to discuss elastic-plastic
cracks of composite materials. The static extension of the plastic zone
ahead of a crack in the soft matrix and the crack tip opening displacement
can be minimized by increasing the shear modulus and the yield strength of
the matrix phase. The relationships between the applied load and the crack
opening displacement have been found for various bi-material systems. By
experimentally determining the fracture toughness of the matrix material,
the critical fracture load can be found using the present analysis.

The dislocation model of an elastic-plastic crack has been extended
to study the case where the second phase is of finite dimension. Approxi-
mate methods of analysis are outlined to discuss the cracking of a hard
surface film or a lamina of finite width and having plastic deformation

in the neighboring phase.
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CHAPTER I

INTRODUCTION AND REVIEW

1. Purpose of the Investigation

Appreciable attention has been given in recent years to the develop-
- ment of composite materials. Dispersed second phase particles and fibers

in soft matriges provide important technological advantages. The presence
of dispersed phases plays an important role in determining the strength

and ductility of the composite.

With the increasing need for ultra high-stfength materials in modern
technology, it becomes necessary to obtain a better understanding of the
properties of composite materials and of the theoretical background under-
lying these properties. For erystalline materials in particular, a study
of the behavior of cracks and dislocation arrays and their interactions
with various heterogeneous elements in these materials is evidently of

basic importance.

The purpose of the present investigation is to explore certain
essential features concerning the propagation of slip bands and elastic-
plastic cracks in composite materials. Stress singularities at thé tip
of cracks and slip bands are first studied, The extension of elastic-
plastic cracks under external loading is then examined. Finally, by
employing the appropriate fracture criteria, the critical fracture load

can be determined as a function of material parameters.

In the'following sections, the Dugdale model of an elastic-plastic
crack is first introduced (Section I.3). By combining this model with the

concept of continuously distributed dislocations (Section I.L), Bilby,



Cottrell and Swinden were able to develop a dislocation model of an

elastic-plastic crack. This dislocation model is employed in the present
analysis to study the fracture of composite materials. An outline of the
mathematical procedure involved and the underlying physical significance

of this model are given in Section I.5.

In the dislocation model, stresses arising from three different
kinds of sources are essential for determining the equilibrium configura-
tion of dislocations representing the crack., The first kind is the dis-
location stress O3 at a point due to all the dislocations in the array.
The effect of inhomogeneity on the elastic field of dislocations has been
taken into account in 0y The second kind of stress, g, is the resis-
tence stress to the motion of dislocations exerted by the lattice., Stress
o, is considered to be identified with the lower yield stress of the ma-
terial., This is because the lower yield stress is the stress at which
Liders bands spread. The third kind is the stress on dislocations due to
externally applied loadings. A critical examination of this effective
stress due to an uniformly applied stress, 0y is given in Chapter II.
Stresses on dislocations arise from internal and external sources other

than those mentioned above can readily be included in the stress terms

o, and o, respectively.

In Chapters IIT and IV attention is focused on the behavior of
elastic cracks and dislocation arrays in two-phase systems. The medium
under consideration is made up of two half-planes with different elastic
constants and'welded together at the interface. The types of stress
singularities at the tip of cracks and dislocation pileups are of primary

interest,



Experiences gained in these investigations are esgential in extend-
ing the results to the examination of elastic-plastic cracks. A study of
the static extension of elastic-plastic cracks under external stresses

and the determination of fracture load are presented in Chapter V.

Finally, attempts are made to take into consideration the effect of
dimension of the constituent phases on the fracture behavior. The second
Pphases considered are in the forms of a surface film and a lamina embeded

in the matrix phase.

A flow diagram showing the systematic formulation of the present

investigation is presented in Fig. I-l.

2 Modes of Fracture

The redistribution of stresses in bodies caused by the introduction
of a crack is one of the essential features in fracture mechanics. The
stress fields near crack tips are closely associated with the local mode
of deformation which can be divided into three types as illustrated in

Figa I“2 [l]a

Mode I, the opening mode, is characterized by local displacements
in which the crack surfaces move directly apart (symmetric with respect

to the x-y and x-z planes).

Mode II, the edge sliding mode, is associated with displacement in
which the crack surfaces slide over one another perpendicular to the lead-
ing edge of the crack (symmetric with respect to the x-y plane and skew-

symmetric with respect to the x-z plane).
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MODE I MODE oI MODE I

Fig. I-2., THE BASIC MODES OF CRACK SURFACE DISPLACEMENTS [1].



Mode III, the tearing mode, the crack surfaces undergo anti-plane
shear and slide with respect to one another parallel to the leading edge

(skew-symmetric with respect to the x-y and x-z plane).

3. Dugdale Model of a Crack

In an investigation of statiec yielding at the ends of existing slits
in stretched plates, Dugdale observed yield zones confined to a very nar-

row band lying along the line of the slit [2].

Dugdale further provided an analysis of this problem which is based
upon the following three hypotheses:
a, The material in the yielded zone is under a uniform tensile
yield stress Y.

b. The thickness of the yielded zone is so small that the elastic
region outside may be regarded as bounded internally by a flat-
tened ellipse of length 2(c+s), where c is the half-length
of the slit, and s +the length of the plastic extension.

c., The yielded zone is of such a length that the stress at the

end of it is finite.

Under these hypotheses the stress distribution for the crack and
its associated plastic zone as shown in Fig. I-3 may be determined by
superposition of the three stress states shown in Fig. I-4. The combina-
tion of states 1 and 2 leads to free crack surfaces. Then the state 3
is needed to impose the yield stress on the plastic zones. The problem
of a straight cut loaded over part of its edge has been examined by
Muskhelishvili [3]. His stress functions were used by Dugdale in the

analysis.
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By observing that the stress should be finite at the tip of the
plastic zone, Dugdale obtained a relation between the applied load and

the length of plastic zones as:

) . (1.3-1)

e

=2 sin2 (

o kol

It was-further pointed out by Goodier and Field [4] that the im-
position of the finiteness condition does insure the stress component
c&y at the tip of the plastic enclave to be not greater than the yield
stress and the stress along the line of crack is everywhere within the

yield condition.

Dugdale's model of crack has a reasonable physical basis and agrees

well with his experimental results as 'shown in Fig., I-5.

L The Equilibrium of Continuocusly Distributed Dislocations

To circumvent the difficulties inherent in the discrete dislocation
formulations as usually encountered in dislocation pile up problems, the
concept of continuous dislocations was introduced [10,11]. In this me-
thod of calculation, discrete dislocations with finite Burgeré vectors
are replaced by continuously distributed dislocations with infinitesimal
Burgers vectors. The total Burgers vector of the continuous distribution
is the same as thaf of the discrete configuration. This technique is
valid provided the separation distances between dislocations are compar-

able to the width of dislocations.

Suppose there are n discrete dislocations on a slip plane in the
domain D, each having Burgers vector of magnitude b. To replace these

9
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by an infinite number of dislocations with infinitesimally small Burgers
vector, we can define a distribution function f(x) such that f(x)dx
is equal to the sum of the Burgers vectors of all the infinitesimal dis-

locations that lie on the slip plane between the positions x and x+dx.

To find the static equilibrium configuration of dislocations at
(%x,0) in the domain L, we need to take into consideration all the
stresses acting on each dislocation. These can be the stress ca(x,t)
due to a dislocation at x=t and the stress o(x) due to sources other
than dislocations in the domain L. Consequently, at equilibrium, it

requires

ldd(x,t) f(t) at + o(x) = 0 . (1.4-1)

The above equation usually has the form of a singular integral
equation. A method of solving f(t), the equilibrium configuration of

the continuously distributed dislocations, is outlined in Appendix A.

5e Bilby, Cottrell and Swinden Model of an Elastic-Plastic Crack

Dislocations are as useful for discussing fracture as for plastic
deformation [5]. In both slip plenes and cracks the stress between corre-
sponding points on opposite faces is less than Hooke's law predicts, for
the given displacements between these points. Dislocations provide a
natural means for including such regions within the framework of linear

elasticity.

By means of Volterra-Somigliana dislocations a unified description

can be given of various types of cracks in elastic and elastic-p}astic

11



solids. These dislocations need not be crystallographic and can exist in
any elastic body, whether crystalline or not. Let such a dislocation lie
along the z axis as in Fig, I-6, and take a circuit M to N around it.
The Burgers vector b of the dislocation is defined by the line integral

of the gradient of elastic displacement along this contour, i.e.

E=f%§- ds . (1.5-1)

When b is parallel to the z axis, the dislocation is of screw type;

when perpendicular, it is of edge type.

Fracture is a form of nonlinear mechanical behavior. The deviation
from Hooke's law may come from rupture of atomic bonds between crack
faces, as in simple brittle fracture, or from plastic yielding at the end
of the crack, as in ductile substances. Hooke's law is obeyed well out-

side this region at low applied stresses.

In view of the similarity of associated displacements between dis-
locations and cracks, the elastic field of the three modes of cracks can
be represented by appropriate distributions of dislocations., This is
depicted in Fig. I-T7. Conseguently, we can use linear elasticity every-

where by representing the nonlinear region as a packet of dislocations,

To take into account the unstable growth of cracks and the plastic
deformation associated with cracks in ductile materials, Cottrell [6]

postulated the following modes of deformation.

In a “ecumulative" mode of fracture, for a constant law of force be-

tween separating faces, the primary group of dislocations is geometrically

12



Fig. I-6. DEFINITION OF A DISLOCATION [5].
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sufficient of itself to complete the total fracture, merely by running to
the far end of its plane. This is an unstable mode of fracture, i.e.,
the applied stress needed to keep the dislocations moving diminishes as

the dislocations move and multiply.

In a "noncumulative" mode of fracture, each incremental growth of

- the plastic zone requires the injection of more dislocations into the slip
lines and thus push the existing dislocations further across the section.

Meanwhile, the applied stress has to be increased correspondingly, reach-

ing the general yield stress when the plastic zone crosses the whole load

bearing section, so becoming general-yield.

By combining the above idea with the Dugdale model of a crack, Bilby,
Cottrell, and Swinden were able to solve the problem of the gpread of
plastic yield from a notch [7,8,9]. They considered an infinite isotropic
elastic medium with shear modulus G subjected to uniform shear stress
qyz =0, at infinity and containing a distribution of long straight dis-
location lines lying parallel to the z axis in the x-y plane. The re-
sistance stress to the motion of dislocations is taken to be Gb(< Gé)
in the region |x| <c and Gi(> Ué) in ~-a<x<-¢c and c< x< a.
Wnen o_ =0 the region |%| < ¢ represents a freely slipping crack and

the dislocations beyond +c represent plastic slip at the ends of such a

crack,

The problem in the theory of continuocus distribution of disloca-
tions is most easily solved by setting up the integral equation which
expresses the requirement that the resultant shear stress on any disloca-

tion in the distribution is zero when the system is in equilibrium [10,11].

15



Let f(t) %be the distribution function of dislocations at x=t.
Using the concept of infinitesimal dislocations introduced in Section I.lL,

the shear stress at (x,0) due to the dislocation at (t,0) is

Gyz(x) = éfﬁ%%EQE (1.5-2)

where A=Gb/2x and " b 1is the magnitude of Burgers vector of dislocations.

Hence, at equilibrium, it requires

a,
£(t) (
Z; x_(_t at + i‘—i_‘l =0 (1.5-3)

where o(x) = o, - o, for |x| < e, and o(x) = o, - q for c< |x| <a.

By applying the technique outlined in Appendix A, the above singu-

lar integral equation can be inverted and the solution is found to be:

o, -~ 0T
f(x) = —_—57_2 [?osh-l E%E +n| - cosh™t E%E + nu (1.5-k)

where m = (a2 - c2)/a and n = c/a. Figure I-8 shows the quantity
n?Af(x)Kci~Go) as a function of x for a = 2c. It is assumed in this
model that plastic relaxation at crack tips is caused only by injection
of dislocations into the plastic zone. The form of this distribution
function agrees with qualitative expectations. The same aﬁalysis holds

for in plane shear mode of crack where edge dislocations are used.
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Fig. I-8. DISTRIBUTION OF DISLOCATIONS ALONG A SHEARED SLIT
(|x|<ec) AND ITS ASSOCIATED YIELD ZONES (c<|x|<a) [8].
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The necessary condition [12] for the existence of solution of the
integral Bq. (I.5-3) leads to the relation between the applied stress and

the extension of plastic zone:

‘E = sin [“(Gl _ Ua)] (1.5-5)
e]

This condition is equivalent to Eq. (I.3-1) which was based upon the

finiteness of stress at the tip of plastic zones.

Using the theory of a perfect plastic solid, Hult and MeClintock
{14] nave considered the plastic relaxation at the tip of a sharp notch
of depth ¢ in a semi-infinite medium x > 0 subjected to simple shear
in anti-plane strain., A comparison of lengths of yield zones as deduced
from the dislocation theory and from Hult and McClintock's work is shown
in Fig. I-9. The numerical results from the two cases are in good agree-
ment, with a difference of less than five percent. The plastic zone con-
sidered by Hult and MeClintock is a circular region at the crack tip.
Since this is very differeﬁt from the thin plastic zone considered in the
dislocation model, it would appear that the length of the plastic zone is

insensitive to the shape,

The dislocation model of the elastic-plastic slit thus agrees in
its prediction of the length of plastic zone as a function of stress
both with the experiment on thin sheets and with a treatment by eclassical

plasticity theory.

The relative displacement ®(x) of the positive side of the slip
plane with respect to the negative can be obtained by integration of the
" distribution function (I.5-4). Thus
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THEORY (B) [8].
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2
E(éQLElT = (x+c) cosn™t [ 4 n| - (x-¢) co n™t |
b(a; -0, xX+c cos — n| .
(1.5-6)
A plot of the function ﬁgAQ(x)/b(ci-ob)c is shown in Fig. I-10 for

a = 2¢c. Finally, let x=c in (1.5-6) we have the relative displacement

at the tip of a freely slipping crack,

2
Ad(c
203(01(')05) =t (3) . (1.5-7)

Equations (I.5-5) and (I.5-7) relate the important parameters of
the problem, namely, the applied stress, the crack opening displacement,
the crack length and the extension of plastic zone. To achieve a maxi-
mum crack opening displacement for a region of local yielding of given

size, the critical crack length can be determined from these two

equations.

Tt is also noted that at low applied stress Eq. (I.5-7) reduces to

the familiar form of Orowan [15] and Irwin [16] equation of fracture

~

stress:

The plastic wbrk dissipated in propagating the crack is found to be

Ty = o;0(c) . (1.5-8)
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Fig. I-10. SHEAR DISPLACEMENT ALONG THE SLIT AND YIELD
ZONE [8]1.
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CHAPTER ITI

STRESS DISTRIBUTION IN TWO-PHASE SYSTEMS SUBJECTED
TO UNIFORM EXTERWAL LOADINGS

1. Introduction

The study of the behavior of cracks and dislocation arrays and their
interactions with various heterogeneous elements in wmaterials is of basic
importance to-the understanding of composite materials. Among the prob-
lems examined, partiéular emphasis has been given to the interaction be~
tween screw dislocations aﬁd phase boundaries in a composite solid formed

by two elastic half-planes having different shear moduli (17,18,19,20].

In a recent paper [21], it was pointed out by Smith that the above
results cannot be used to describe the behavior of a bimetallic complex
subjected to a uniform anti-plane shear stress at infinity. Owing to the
necessity of satisfying the compatibility conditions at the interface, the
author claimed that a realistic discussion of these types of problems is
achieved only when one of the materials is completely surrounded by the

other. However, this is not necessarily true.

On the other hand, the problem of bicrystals subjected to tensile
and compressive stress or strain on the surfaces is of interest to the
study of interaction of slip systems in two phases [22,23]. The solution
of such a problem also simulates the elastic field in a material with one-
dimensional fluctuation of composition. The strain energy induced in such
a case is of considerable importance to a critical study of the free energy
change associated with the process of a spinodal decomposition [24k]. Fur-

thermore, the elastic field at the interface has to be considered for a

22



meaningful discussion of the problems involving cracks and dislocation

arrays at phase boundaries.

The aim of this chapter is to examine in detail the effect of in-

homogeneity on stress distribution under various loading conditions.

2. Stress Distribution in a Bi-material Plate Under Uniform Anti-plane
Shear Stress or Strain

a. Apalysis’

Congider a bi-material plate of thickness 2h (Fig. II-1),
composed of two elastic media welded together at x=0. The shear modulus
is G, for x>0 and G, for x < 0., A uniform shear stress o =o

1 2 yZ &
is applied at the upper and lower surfaces of the plate., Assuming per-

fect bonding at the weld, so that Or and the z-component of the dis-

placement have to be continuous at the interface.

Let Wl and W2 be the z-component of displacements in re-~
gions x>0 and x < 0 zrespectively. The equilibrium of stresses re=
guires that Wl and W2 satisfy the Laplace equation. A boundary value
problem is then set up for the upper half of the plate (Fig. II-2). By

making the substitution

(11.2-1)

the problem can be rewritten with homogeneous boundary conditions.
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Oy, = G; = constant

Fig. IT-1. THE COORDINATE SYSTEM OF A BI-MATERTAL PLATE
UNDER UNIFORM ANTI-~PLANE SHEAR STRESS.
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Fig. II-2. THE BOUNDARY VALUE PROBLEM OF THE UPPER HALF
OF THE PLATE.
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The functions (I)l and <I>2 are assumed in the form of Fourier
gseries with unknown coefficients. By employing the continuity conditions
at the interface, these coefficients can be found. The resulting expres-

sions for displacements are obtained as following:

. 1 1 '
-20 k sin (n+—2-):t (n+-2-)1ry ~-AX 0 |

[>.¢]
- . n a
EY 6 N e g v (x>0
n=0 1" 1
(11.2-2)
. 1 1
0 20 k sin (n + =) n (bn+%)y Ax o
a 2 N 2 n a
W, = 5 sin A e + =73 (x<0)
G.hA -Gy
n=0 2 n
where G -0
X = L
G2+Gl
and.

1
?\n=(n+§) x/h .

The expressions for stresses can readily be obtained by dif-

ferentiation of the above equations

© -20_k sin (n + -]2-'-) 7t (n + %) My =A X

(n+_1;)ﬁ cos ——— e + 0, (x > 0)
n=0 2

gy = (11.2-3)
. 1 1
©w 20k sin (n +3) =« (n+Z2)ny Ax
a 2 2 n
cos e + 0 (x < 0)

’ (n + -];) ) b &
n=0 2
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and

: L 1
© 20k sin (n + 3) « (h+3) ny -Ax

. n
s &J‘ﬂ sin = e (x> 0)

n=0 2

Oy = (T1.2-4)
R L 1
© 20 k sin (n + E) T (n + 5) ny A X (x < 0)
T sin = e
= (o +3) x

Stress contours of both Oy and 6&2 in a plate of 2 cm
thick under unit applied shear stress are shown in Fig. II-3 and II-4

respectively for k = -k,

Oy is induced at the interface purely due to the inhomoge-
neity of the medium and fall off exponentially with the distance from the
interface. An examination of these contour lines shows that high concen-~
tration of the component Oy occurs at both ends of the interface. This
can also be deduced from Eq. (II.2-4) by setting x=0 and the stress can

be expressed in closed form as:

g
Eiz = %? In[sec ( g%) + tan (%%)] . (11.2-5)

The variation of Oy with y at the interface is shown in Fig. II-D.
The highly concentrated o, Bear the surfaces of the plate can be the

primary cause of splitting of the interface.

As to the component Gyz’ it is noted that stress concentra-

tion takes place in the harder phase and around the center of the
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the interface. Unlike Or? this stress component is discontinuous
across the interface. At a distance equal to the thickness of the plate
from the interface cyz tends to become uniform and approaches the value
of the externally applied stress.

Also of interest is ayz on the middle plane of the plate. By

setting y=0 in Eq. (IT.2-3), we obtain in closed form:

=7X
1 - g%'tan-l (e 2h> (x > 0)
0y = (I1.2-6)
AX
1+ % tan™t <e2h> (x<0),
b. Conclusion

Several interesting features concerning the interaction of
screw dislocations and phase boundary can be deduced from the stress con-

figurations:

(1) Consider the case where k < O, The directions of com-
ponent forces acting on a left-hand screw dislocation are shown in Fig.
II-6. The combined effect of Oy and Gyz in phase 1 for
o, = O&Z > 0 +tends to move left-hand screw dislocations toward the phase
boundary and onto the plane y=0 provided cross slip is possible. Mean-~
while, left-hand screw dislocations in phase 2 are likely to be nucleated
at both ends of the interface where there are high stress concentrations.
These dislocations will be driven to the plane y=0 and further toward

the left end. As a result of these motions, left-hand screw dislocations

tend to pile up against the phase boundary near the center of the plate
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in the hard phase where crack nucleation is likely to occur. On the other
hand, left-hand screw dislocations gliding toward the left end in phase 2

will not form pileups.

By repeating the above investigation for opposite sense of
loading and Burgers vector of dislocations, it is found that right-hand
screw dislocations can pile up at the phase boundary also only in the hard

phase. The image effects on screw dislocations are not considered here.

(2) Tt is also noted that the stress oo, OF the plane y=0
near the interface tends to become uniform as the plate thickness increases
(Fig. II-T7). Equation (II.2-6) indicates that for a thick plate o, Desr
the interface attends the constant values of 0£(l-k) and oé(l+k) in
phases 1 and 2 respectively. This leads to the important conclusion that
for lengths of cracks and dislocation arrays much smaller than the physical
entities in consideration such as the thickness of a bierystal and the di-
mengion of a grain, constant stress on dislocations can be achieved by uni-
formly applied external stresses. This result indicates that the conclu-
sion reached by Smith is not quite right. The maghitude of this stress is
effected considerably by the rigidities of the constituents. This finding
is especially significant in the later discussion of problems involving

crack crossing a phase boundary.

The stress field on the middle plane of the plate is of
considerable importance because it simulates the stress field far from the

boundary when the plate becomes very thick.

(3) Uyz in phase 1 on the plane y=0 decreases as the rig-
idity of the phase increases. There is virtually no stress on this

middle plane when k=1, Consequently, uniformly applied shear stress
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can not cause screw dislocations to pile up in phase I against a rigid

second phase,

'(h) In case a uniform shear strain eyz = ea is applied at

the surfaces of the plate, the elastic solution is trivial. The z-

component of displacement is uniform and W = eay. The only stress com-

ponent of displacement will be Uyz = Glea for x>0 and G&Z = G2€a
for x< 0.
(5) Now consider the case where a uniform strain €yz = ea

is applied at the surfaces of a plate composed of two anisotropic media.
The elastic solution of this case is believed to lie within the two ex-

treme cases, namely, a bi-material plate under uniform strain and stress.

3. Stress Distribution. in a Bi-material Plate Under Uniform
Compressive Stress

a. Analysis
The elastic solution for a bi-material plate (Fig. II-8) under
uniform compressive stress is characterized by the complications due to
the presence of Poisson's ratio éffect. For a welded interface the con-
tinuity condition requires that the stress components o__, ch and dis-

XX

placement components Ul’ U2 and V., V, in the x and y directions

1 2
respectively, be continuous across the plane x=0, The subscripts 1 and

2 denote regions for which x>0 and x < 0 respectively.

Stress functions for general loadings on a semi-infinite strip
under plane stress condition have been discussed by Iyengar and Alwar [25,
26]. This technique is employed in the following analysis., The boundary

conditions for both regions are:
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Fig. II-8. THE COORDINATE SYSTEM OF A BI-MATERIAL PLATE
UNDER UNIFORM COMPRESSIVE STRESS.
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at x=0

o0
= = mny
NN ) z K, cos =
m=1,2
00 nmy
o = = —L
;_cy)l “xy)e Z Ly, 8in (11.3-1)
' m=1,2
Uy = -0,
Vi = Vé 3
at y = +h
ny)l = ny)Q = Oé
(11.3-2)
ny)l = c'xy)2 =0 ,

The unknown normal and shear stresses at the interface are assumed in the
form of Fourier series with unknown coefficients to be determined from the

continuity conditions.

let @, and &, be the Airy stress functions in regions

1 2
x>0 and x<O respectively., All well known theorem for constructing
biharmonic function is that for given functions f(x,y,z) and g(x,y,2)

harmonic in a simply connected region, then & = fx + g 1is biharmonic in
the same region [27]. By teking into consideration the syﬁmetry property

of the stress components of the plate, the following stress function is

constructed:
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O'ax x 1 -amx
o = S+ Z = [, (1 +ax)+Lax]le cos o y
m=1,2 “'m ‘

L

[s.¢]
+f Cl(o.') cos ax

A = [y sinh oy - (l+ah coth ah) cosh ay] do
¢ cosh ¢h '
(11.3-3)
where Am’ Lm' and Cl are unknown coefficients and a, = mn:/h.
It can be shown that Vh¢> = 0 1is satisfied. Since the plate

1

has finite thickness and is infinitely extended in the x direction both

discrete and continuous eigenvalues occur in the above expression,
The stress components in the region x > 0 can readily be
obtained by differentiation of <I>l:

o« -Olmx
o = - Z [Am(lmmx) + Lmozmx]- e cos o, y
m=1,2

00 Cl(ot) cOs Ox

*), “cosnan — [ov simh oy + (1-ah coth an) cosh ay] dx
(II.S—)"')
_ % o X
Oyy = Ty + z [Lm(ozmx-2) + Am(ozmx—l)] e cos oy
m=1,2
0 Cl(a') cos Ox
B cosign— [0y sinh ay - (lsoh coth oh) cosh ay] au
(11.3-5)
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) - x
o= Z [Lm(l-ozmx) - Amozmx] e sin .y
m=1,2

/oo Cl(oc) sin ax
+

cosh ¢h

@2 is similar to <I>l except that Am, Lm and C

--Lm and 02 respectively.

1

[0y cosh ay - ah coth ah sinh ay] dx

(11.3-6)

are changed to Bm,

By considering the stress boundary conditions in both phases,

we oObtain the following relations

23]

22 m+r
A = K+ 16n°x jz (-1)™7 a_rM(r,n)
r=1,2
e o)
+ Bmext Z (-1)™T erN(r,m)
r=1,2
2 =z '
B =K + 16m x z (-1)™FT BrrM(r,m)
r=1,2
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where

o 3
M m___f . x” tanh x dx _
(r,m) b (1 + ) (2 v PR (2 v ) (11.3-9)
sinh 2x no x +rx

00 22
tanh x dx
N(r,m) = M(r,m) + f rax .
. 2 242 2 2 2.2 2%
0 (x°+m™ ") (x™ + rn (l t e EX)

(11.3-105

The details of the derivation are too tedious to be shown here. The dis-
placement components can be derived from the stress functions by the

method of Coker and Filon [28]. The compatibility of displacements at the

interface requires

2A 2B v, vyl
B, _ B =—=+-5—=])=0 (I1.3-11)
El B m o



(¢
+ B S L (-1)™ & R(r,m) [__ . _1..]

1
E E
r=1,2 1. "2

1 1 1 .
= (-1)"" 2g {—— - ——] (11.3-12)
a El E2 ‘
where
® x tanh x’d_x
Q(rm) = 5% 5 B o, 5 250 (11.3-13)
0 (l+m>(x + m )(X +I‘T[)
R(r,m) = 3r,m) +

fm r " tanh x
2x 2 22,2 222 °
O(l+m)x(x +m ") (x" + ")

(I1.3-1k)

hi



Equations (II.3-7), (I1.3-8), (II.3-11) and (II.3-12) give a system of

linear equations to determine A, B, K and L . The constants C
m Tm’ Tm m 1

and 02 can then be evaluated by

© " A.m(ah)2 m + % Lm(menr2 + 312h2) m
Cy (@) = hn ZZ (-1 55 220
T, 2 (m"x” +a™n")
1
. Zoh
(l * Simn Hxh)'
(I1.3-15)
o m Bm(ah)2 m - %-Lm(mgne + 312h2)
cy(a) = bn :g (-1) S5
T, 2 (m" %~ +a™h7)
1
’ @.+ 20h ) ‘
sinh Zoh

Tt is noted that the above solution differs from that of a bimetallic

plate under uniform tension o, = o, by changing the term (-l)m+l

205(1/El -_1/E2) in EBq. (II.3-12) to (-1)m+l eo-a_(ve/E2 - vl/El).
Consider the case in which a 2 cm thick plate is subjected

to unit compressive stress on the surfaces. It is assumed that El/E2 =2

and V=V = 1/3. Owing to the slowness of the convergence of series

in Egs. (IT.3-7), (II.3-8), (II-3-1l),and (II.3-12), four leading terms

of each coefficient are evaluted. The implication of the results are

discussed in the following section.
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b. Conclusion
(1) The tensile stress 0, induced around the plane x=0
tends to cause debonding at the interface. The maximum of this normal
stress occurs at both ends of the interface. The magnitude of this
tensile stress there is about 9 percent of the applied stress. As the
center of the plate is approached, this tensile stress diminishes and

finally becomes a compressive stress.

(2) The magnitude of shear component Ty at the interface
can be as high as 25 percént of the applied stress as shown in Fig. II-9.
This shear component also falls off with the distance from the interface.
In composite materials with weakly bonded interfaces, this shear com-
ponent can be the primary cause of splitting of phase boundaries. Con-

sequently, this might lead to crack blunting at the interface.

Both normal and shear stresses at the phase boundary are
caused by the inhomogeneity of the medium. The effect becomes more dis-
tinet as the differences in elastic constants of the two constituent

phases increase,

(3) The normal stress component cyy on the middle plane
of the plate varies with plate thickness as shown in Fig. II-10. It is
noted that a nearly constant stress is attained in the viecinity of the
interface as the plate becomes thick. Consequently, in discussing cracks
and edge dislocation pileups ahead of a bi-material interface, a uniformly

applied stress field can be achieved in this manner.
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Fig. II-9. SHEAR STRESS ALONG THE INTERFACE IN A BI-MATERTAL
PLATE OF UNIT THICKNESS WITH E,/E=2 and v =v=1/3.
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(4) One further implication of the present solution was
pointed out by Hirth, Tiller and Pound [24] in discussing the mathemst-
ical theory of spinodal decomposition. If a finite system underwent an
one-dimensional sinusoidal fluctuation in composition, the resultant
configuration would resemble that shown in Fig. II-lla. This is an im-
provement of the theory originally proposed by Cahn [29]. 1In Cahn's
theory, it was assumed that no y and 2z displacements are allowed

(Fig. II-11b). This is certainly unrealistic.

An exact élastic solution of a non-homogeneous medium
with sinusoidally varying elastic constants would be very complicated.
~ However, the present solution does simulate the elastic field around the
interface in Fig. II-lla, It indicates that an exact solution for such
a relaxed configuration will yield a stress tensor that contains both
normal and shear components. These stress components would fall off ex-

ponentially with distance from the interface.

Furthermore, an exact elastic solution of the relaxed
configuration in Fig. IT-lla, containing general stress tensor, would

lead to a revision of the strain energy calculation as proposed by Cahn.
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CHAPTER IIT

ELASTIC CRACKS AT A BI-MATERTAL INTERFACE

1. Introduction

The aim of the present chapter is to discuss the stress field about
a crack perpendicular to a bi-material interface, under the three modes of
deformation. The stress concentration at the tip of & crack in one phase
determines the extent of plastic yielding and crack nucleation in the
neighboring matrix. It also indicates if a splitting of interface and a

subsequent blunting of crack tip are possible.

Analytical solutions for dislocation pileups at phase boundary in a
two-phase system have been discussed by Barnett [20] and Kuang and Mura
[30] for different loading conditions. The mathematical procedures for
analyzing these problems are equivalent to that of semi-infinite wedges.
The present work deals with the problem of elastic cracks of finite length.
The displacement of crack surfaces has been represented by that of a con-
tinuously distributed dislocations [31]. The exact expression for applied
stress on dislocations as discussed in Chapter II is employed in this

investigation,

2 Mode IITI Crack

a. Dislocation Distribution Function

Consider a plate composed of two semi-infinite strips welded
together at the interface. The coordinate axes are chosen to be the same
as that depicted in Fig. II-1l. Let Gl and G2 be the shear moduli and

121 and vy the Poisson's ratios with reference to phase 1 and 2. A
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crack of length T in phase 1 is perpendicular to the interface (Fig.
ITI-1). The elastic field of the crack is represented by that of a con-

tinuous distribution of infinitesimal dislocations,

It has been pointed out in Chapter I that three kinds of
stresses need to be considered in discussing the equilibrium configura-
tion of dislocations. These are the dislocation stress, PE

tive stress 6n dislocations due to externally applied stress, g, and

the effec-

the friction stress, Oy

When the thickness of the bi-material plate is much larger than
the length of cracks in consideration, the stress field of dislocations in
an infinite medium can be employed; Iet a single right-hand serew dislo-
cation of Burgers vector b be situated in x>0 at (t,0). The line
direction is parallel to the z-axis. Assuming perfect bonding at the

weld, the stress field due to the dislocation is:

) G,b v ) G,b Ky (x> 0)
2n 2 2 2n 2 2
(x-t)” + ¥y (x+t)" + y
Oy, = (IIT.2-1)
G.b
1 1+k
" ox ( 2) > 5 (x < 0)
(x-t)" + y
and.
b
Gy Xt G1P g(xst)
o 52t 5y 5B (x > 0)
(x-t)" + ¥ (x+t)" + ¥
Oy = (111.2-2)
G.Db
17 (L+k)(x-t)
5o 5 (x < 0)

(x-6) + y
where k = (G2 - Gl)/(-G2 + Gl).

k9



Oyz = —0q
p CRACK
6
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Fig., IIT~l. A MODE ITTI CRACK PERPENDICULAR TO A BI-MATERTAL
INTERFACE.
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On the plane y=0, Eq. (ITI.2-2) reduces to:

G.b
1 1 : k
21 (x -t + X + t) (X > O)
Oy, = o (r11.2-3)
1 1+k (x < 0)
2r X - t X )

The effective stress on the middle plane due to a uniformly
applied stress sz = =0, is found to be -aé(l-k) as discussed in

Chapter II. Inside the crack, the resistence stress, 0 to the motion

of dislocations vanishes.

Let f(t) be the unknown distribution function of dislocations
of strength b. The force equilibrium on a single dislocation at (x,0)

leads to the following singular integral equation:

2ﬂcé(l-k) )

£(t) £(t)
f X_tdt+kf0 St ag - e =0 (0<x<1) .

(I11.2-4)

The first integral is understood to be a Cauchy principal value intregal.
The physics of the problem requires that f(t) is unbounded at both ends

of the crack.

Equation (III.2-4) is sufficient to determine the solution for
dislocations piling up at one end. However, in discussing cracks, an
additional condition is needed in order to determine the solution com-

pletely. Suppose dislocations neither leave nor enter the crack. Then
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the line integral of displacement along any closed circuit not crossing

the crack region should vanish.

The z-component of displacement at x > 0 due to a single

right-hand screw dislocation at + > 0 is:

wix,y,t) = % [tan'l ” Y4k tant X } . (111.2-5)

Congider the closed circuit around the crack (Fig. III-2). The resultant
displacements on the upper and lower paths due to all the dislocations

inside the crack are:

L

4 w(x, +e,t) £(t) at

W(x, +¢€)

fL w(x, - €,5) £(t) dt (111.2-6)
0

W(x, - €)

As ¢ =0, the total displacement integrated along the circuit vanishes:

s

0

L 0
w(x,-e)dx+f W(x, +¢e) d&x
3 :

L

it

f(t) dt] dx

L
-o[ -2b(1 + k)[{
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CRACK.
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Consequently, it yields
L
‘_/f f(t) dt = 0 . (III.2-7)
0

In fact, Eq. (IIT.2-7) is equivalent to the compatibility con-
dition in linear elasticity. However, the above condition can be deduced
immediately from the crack opening displacement consideration., Since it
is assumed that there is no dislocation leaving nor entering the crack,
the crack surfaces must close at both ends. Consequently, the integration

of Burgers vectors of all dislocations in the crack vanishes:
L
.}(. bf(t) dt = 0 . (111.2-8)
0

This is identical with Eq. (III.2-T7), as expected. Equations (III.2-4)

and (III.2-7) are sufficient to determine f(t).

Integral equations with kernel function of the type K(x-t) can
be solved by the very ingenious Wiener-Hopf technique [30,32,33,3&]. An
outline of this method is given in Appendix B. To avoid the very comber-
some mathematical procedures involved, only the essential steps in solving

Egs. (III.2-L4) and (III.2-7) are shown below.

mal oy

Let % =u and =v, Eq. (IITI.2-4) can be rewritten as:

u G- b

1 £(v) 1 e (v) ) 2ﬂcé(l-k) ) 0 cuct
[ -vd+k[u+vd- 5= s )

(111.2-9)
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Further extend Eq. (III.2-9) to the interval L < x < w by defining the

new function h(u):

1 ( 1
fiY)vdV"'k/ fV)VdV=h(u) (l<u<w).

0 0

(111.2-10)

u

Let 7= s and apply Mellin transform to the variable wu in the above

two equations. The transformed equations can be»recast in the general

form in terms of the transform variable ux

F+(a>) K(w) = G+(cb) + H (o) (III.2-11)

where
1
F_,_((D) = _[ Vw-l f(v) av
K (o) = gﬁgF(w) I'(1l-w)
+ wta wtea =8, ey
r&E) ri - 22) r(&2) ra -
2ncé(l~k) 1
(@) =555
H_.(U)) = -{w h(u) 2Ot au
and
w=o0 + it .
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Denoting o=l and o_=a = % sin-laﬂijﬁyé, it can be shown that

G+(w) is regular in the strip o < o<o,_  eand K(w) is regular and
non-zero in the same strip. We are then looking for the unknown function
F+(m) and H_(®) which are analytical in the half planes ¢ > o¢_ and

o< o, respectively.

Equation (III.2-11) is in the general functional relation to which
the Wiener-Hopf technique can be applied. By carrying out the procedures
outlined in Appendix B, the resulting expression is in the form of
Eg. (B-7). 1In this expression, there is an unknown constant which has to

be determined by employing Eq. (III.2-T).

Finally, the solution of the distribution function can be found:

- 1 i (%)2 cosh (— sin” 2 - COSh-l %)}
s SRR

(I11.2-12)
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The terms in the first bracket of the distribution function
expression correspond to those of a semi-infinite wedge. The terms in

the second bracket are necessary due to the unboundedness of f(t) at t=L.

In the limiting case of an infinite homogeneous medium, k=0,

Eq. (ITI.2-12) reduces to:

t g, L-2%
f('L') =

G1® Je(@ - 1)

. (111.2-13)

in agreement with the previous result [31].

As pointed out in the last chapter, the stress which tends to
open the crack vanishes when the second phase is rigid, i.e., k=1,
Figure III-3 depicts f(t) for various values of k. Purthermore, when
an uniform strain eyz = -ea is applied at the plate surfaces the solu-

tion is obtained simply by changing oé(l—k) to G in Eq. (III.2-12).

lea
If, instead of cracks, a double dislocation pileup is consid-
ered, the mwathematical procedures employed above still can be applied. How-

ever, in this case a certain frictional stress, 00 should be specified

on the slip plane. This only changes the last term in Eg. (ITI.2-4).

Finally, it needs to be pointed out that the change of distri-
bution function is small for small variation of G2/Gl (Fig. III-3). The
practical implication of this result is that the effect of inhomogeneity
can be neglected for small fluctuation of elastic constants. The elastic
solution obtained from homogeneous medium can be used as a. first approxi-

mation for these problems.
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b. Stress Field

The stress field of the crack is calculated from

L
o. . (x,5) = o. . (x,¥,t) £(t) at (i=1,2 and j=3).
ij o 1d -

(IIT.2-1k4)

Making the substitution v = cosh™t (%) and integrating in the complex
plane v = o + i¢o as described by Barnett [20], stresses in the

second phase can be obtained:

2
o, (1-k7) sen (y)
o, = - sinh aw_sin a@
X% . ) o o
sin wa sin —2—
t
+ 2 (cosh w_ sinh @ cosh aw_ sin af
o () o) )

. .2 .
(sinh w  + sin g.)

- cos g sin Q’O sinh aw_ cos aﬁo)] (111.2-15)
and
o (1 - ke)
a Fie)
o = ' -cosh aw_ cos af + cos —
vz . . Ta o} o 2
gin ma sin —
a
_ a . .
+— —> [cos ﬂo cogh aw_ sin aﬁo.s:m ¢O
(sinh @ + sin QSO)

2
. L 2
+ ctnho  sinh aw  cos a¢o (p—é - cos ¢o>]} (III.2-16)
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where

2 5
sinh®w_ = %[(-Ié) -1 +J((%) - 1)2 + (%I—“ sin 9)2] (III.2-17)

and

2

2 2
sin25250 = %[1 - (%) +/((%) - 1) + (%— sin 9)2] . (I11.2-18)

p and 6 are plar coordinates as depicted in Fig., III-1l.

At the tip of crack, i.e., -f)—'» 1, Egs. (III.2-15) and (III.

2-16) can be simplified as

o (1-5)° egn(y) & _ .
= — — E) 2 (a~1) sin a¢o (111.2-19)
S1in ma sin -é-
and
O’a(l-kg) L& a-1
9, = — (-5) 2 (a-1) cos aff - (II1.2-20)
sSin ma sin —2—

The stress singularity at the tip of the crack is of the type (%)a
which becomes the inverse square root type only when k=0, namely, the
two phases are identical, It is also noted that the stress concentration
at the tip of a finite crack is smaller than that of a semi-infinite

wedge [20] by the factor of (l-a).

Figure III-4 depicts the variation of o, /oaL with the dis-

tance from the tip of crack on the plane y=0 for various Xk values.
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The resultant shear stress at the tip of the crack is

o (1 - x°)
o= —= — Za-l(a-l)(%)a . (I11.2-21)

sin we sin =

Just as in the case of a homogeneous medium, the resultant stress at the

tip of the crack against 8 bi-material interface is independent of 0.

If the second phase is harder than the first phase, 0< k < 1,
we have 0 < a < %. When -1 < Xk < 0, then %-< a < l. Consequently,
the stress concentration at the tip of a crack in the harder phase is

higher than that in the softer phase., This finding is consistent with

that of Zak and Williams and Barnett [40,20].

3. Modes I and II Cracks

a. Dislocation Distribution Punction

Consider the same thick bi-material plate as discussed in the
last section. A crack of unit length is situated perpendicular to the
interface in phase l. Tensile stress Gjy = 'Oé is applied uniformly
over the plate surfaces to open the crack (Fig. III-5). The effective
stress o&y on the crack plane can be found by the method illustrated

in Chapter II and is denoted as -o;.

Again, the displacement field of the crack is represented by
that of an array of dislocations. The y-component of the normal stress
at (x,0) due to a single edge dislocation at (t,0) in phase 1 is

[35; 36] :
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G.-b
1 2 A+ 3B lhat(x-t)
(0] = - - II . "'l
vy n(nl+I) [x -t x+ % (x+t)3 (TI1.3-1)
where
_ Ny = 1M G
A ll+ T , B 2 . 1 , 1= 2 ,
My Mo 1
and
Ny =3 bv
T]2 = 3 - )‘l've .

The Burgers vector b is prarallel to the interface for mode I cracks and

perpendicular for mode II cracks.

Let f(t) %be the unknown distribution function of dislocations
of strength b, The force equilibrium for a single dislocation leads to

the following singular integral egquation:

1

1 X '
L .17? [X -2 iiit)g)] £(t) at = o (1II.3-2)

QGlb
where 7=W sy O

both ends of the crack.

% (A+B) and B = 2A., f(t) is unbounded at

By defining

g(t) = ~iy£(t)

6l



and k(x,t) = = + B(X-t)  the left-hand side of Eq. (IIL.3-2) can be
(x+t)
separated into singular and non-singular parts as follows:

1 B |
}?li' /(; g—%%f‘—t-ur }%I [ #(t) k(x,t) at = q (111.3-3)

Singular integral equation of this type can be inverted according to the
method outlined in Appendix A and @(t) is solved "formly." The result-

ing equation is a Fredholm integral equation of the second kind:

1
o(x) =fo K(x,t') o(t') at' + F(x) (ITI.3-k4)

where

1l

it

1 -0l 2
K(x,t") - (x + 1 =Nt 4+t >
N x(1-x) [X t

+2ﬁ5t'2 1ot 1 >
r
X+t 2t'2 (l+t'2) T 8(t'+t'2)"t'+t’2

L Bt (t'-x) (-1 L2t + 1 )
2

(t'+X)2 ‘[t'+t'2

+ B_(_________t'(t;gx) (x + 1 =Nt t'e)]
th+x
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and

Plx) = —S ¢ 22X

Nx(l-x) 24 x(1l-x)

The constant c¢ dis to be determined by the condition of conservation of

Brugers vectors:

1
J/~ £(t) dt = 0 (111.3-5)
0

The physical basis of its derivation is shown in the last section.

Equations (III.3-4) and (III.3-~5) have to be solved simul-

taneously. First define

Fl(X =—-l—-—g}—c-— 5 FQ(X) = __..._1;__
2 x(1x) Nx(1-x)

and
o(x) = @l(x) + c®2(x) . (I11.3-6)

Since Eq. (IIT.3-4) is linear, it can be considered as the linear combina-

tion of the following two equations:

1
@l(x) = jg K(x,t") @1(t') ats' + Fl(x) (I1I1.3-7)
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and

1
@2(x) = %4‘ K(x,t') @E(t') at' + Fz(x) ‘ (111.3-8)

@l(x) and @2(x) are then solved separately. Because of the complicated
- form of the kernel in Eq. (III.3-4), a numerical solution of the Fredholm
integral equation is attempted. Using the method outlined in Appendix C,
Eq. (III.3-7§ is replaced by a system of n linear equations. n is the
number of subdivisions in the interval of integration. By solving this
system of linear equations, an approximate expression for @l(x) in the
whole interval can be obtained. Same procedures can be carried out to

solve @2(x).

With the known values of @l(x) and @2(x), Eq. (III,3-6)
can then be substituted into Eq. (III.3-5) and solved for the constant c.

Consequently, ®(x), hence f(x), is obtained from Eq. (III.3-6).

If B=0, a=-k, 7 = Glb/2 and ¢! = Ué(l-k) in Eq.
(ITI.3-4), the solution reduces to that of a mode III crack. A compari-
son of the exact solution obtained from Eq. (ITI.2-12) and the numerical
solution of this case is shown in Fig. IIT~-6. The solid line depicts the
exact solution and the crosses are obtained from the numerical solution,
It can be seen that the agreement is excellent. As a consequence of this
comparison, the numerical approximation to the singular integral equation

can be employed with confidence,

b. Crack Opening Displacement

The configuration of the crack opening displacement can most

easily be obtained by integrating the dislocation density. At any point
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(x,0) in the region ( 0 < x< 1), the crack opening displacement, &(x),

is defined as:

8(x) = bj: £(t) at . (111.3-9)

Figure ITI-T7 depicts the variation of crack opening displace-
ments with the ratio(of shear moduli of the two constituent phases. Com=
paring to the homogeneous.case, it is noted that larger elastic relaxa-
tion occurs near the interface if phase 2 is soffer than phase 1. This

consequence is consistent with physical expectation.

Figure IIT-8 illustrates the variation of crack opening dis-
placements with Poisson's ratios of both pheses. The result shows that
larger elastic relaxation takes place in material with higher Poisson's

ratio.

The stress field at crack tip can easily be found from the

dislocation distribution function:

1

oy () = oyylovt) £6) @ (Li=12)  (IT.3-20)

where oij(x,y,t) is the stress field due to a single edge dislocation.
By plotting the contour lines of stress at the crack tip, the type of
stress singularity can be obtained. %Zesk and Williams [LO] have shown the
créck point stress singularities at a bi-material interfaée. They con-

cluded that as phase 1 becomes harder with respect to phase 2, that is,
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G is higher than G

1 0 the strength of singularity increases, In fact,

this conclusion can easily be obtained by examining the crack opening con-
figuration in Fig, IIT-7., It is noted that the larger Gl/G2 is, the
higher is the dislocation density near the interface. This will certainly

lead to high stress singularity at the crack tip.
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CHAPTER IV

ELASTIC CRACKS CROSSING A BI-MATERTIAL INTERFACE

1. Introduction

The general problems of nonhomogeneous media with cracks and slip
bands have not yet been attacked. The special cases that have been
treated can be grouped into two categories. The first type of problem
deals with cracks aﬁd dislocation pileups which are limited in one con-
stituent phase of a two-pﬁase system or within one grain in a bicrystal.
These have been discussed in the last chapter. The second type of prob-

lem deals with two-phase media where the interfaces contain cracks [L1-Lk].

However, the problems involving cracks and slip bands crossing a
bicrystal interface or a grain boundary have not yet ‘been discussed in an
analytical fashion. This is primerily due to the fact that the associated
mixed boundary value problems in such cases are complicated by the unknown

boundary conditions at the interface.

In spite of the difficulties involved in the analysis, problems of
these kinds are certainly of great practical importance., Examples of
these sorts can be seen in transgranular fractures of polycrystaline ma-
terials containipg brittle inclusion particles, and also for plastic yield-
ing crossing phase boundaries when the slip planes of neighboring grains

are appropriately aligned.

It is the aim of this chapter to investigate the problem of cracks
and slip bands crossing a boundary. The elastic fields of cracks are re=
placed by that of an appropriate distribution of dislocations. By ob-

taining the crack opening displacements, a condition for the extension

13



of cracks under the applied stress can be reached. Furthermore, the

crack tip stress field has been studied in detail.

2. Analysis

Consider a plate composed of two elastic semi-infinite strips welded
together at the interface, The coordinate system is chosen to be the same
as that depiected in Fig. II-1l. The shear modulus is Gl for x>0 and

is G, for x<O. ‘Let a crack, crossing the interface, be situated on
the plane y=0 with tips at (-1,0) and (1,0) (Fig. IV-1). The elas-
tiec field of the crack is again represented by that of continuously dis-

tributed dislocations.

Just as the case examined in Chapter III, there are three kinds of
stresses needed to he considered in discussing the equilibrium configura-
tion of dislocations., These are the dislocation stress, 0y

tive stress on dislocations due to an externally applied stress, 0y2

the effec-

and the friction stress Go'

If the thickness of the plate is much larger than the length of the
crack, the medium can practically be considered as "infinite." Hence,
the stress field of dislocations in an infinite medium can be employed.
Consider the right-hand screw dislocations at (t,0) with Burgers vector
Ei for t >0 and b, for +t < 0. The non-vanishing stress component

2

Oy, at (x,y) is:
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FIG. IV-1. A MODE III CRACK CROSSING A BI-MATERIAL INTERFACE.
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(1) t>0

G, b a
11 xt %1% k()
o1 5 2t oy 5% (x> 0)
(x=t)" +y (x+t)° + y
g =
ya
G, b
11l (14k)(x-t
- ox ( :é( ) (x < 0) (Iv.2-1)
(x-t)° 4+ ya
(2) t<o
Gobo (1-k)(x-t)
on 5 B (x>0
(x-t)" + ¥
G'yz =
GoPo ¢ - % GoP> k(xrt) (1v.2-2)
ox 5 2" Tox 3 -2-
(x-t)" + ¥y (x+t)" + 5
where
- G, - Gy
G, + G,

On the middle plane of the plate, y=0, the above expressions are sim-

plified as:
(L) t>0
G.b
171 1 k
on (x “ T T w t) (x > 0)
0‘ ==
7 G1°1  (14k)
5 - (x < 0) (Iv.2-3)
T X =

76



(2) t<o

Gobs 7 Lk :
on X -t (X > O)
o =
yZ
Goby g Goby g

% X -6 2% X+ % (x<0). (IV.2-k)

The effective stress on the middle plane of the plate due to an

uniformly applied stress Gyz = -0, 1is oy

o, = -oé(l+k) for x < O (Chapter IT). 1Inside the crack, the resistance

= -Ua(l-k) for x>0 and

stress to the motion of dislocations vanishes.

Let f(t) be the unknown distribution function of dislocations rep-

resenting the crack. The regions L, and L, are defined as 0<x<1

1 2
and -1 < x < 0 vrespectively. The union of Ll and L2 is denoted by
I.. Because of the different expressions of Gyz in Ll and L2, the

equilibrium of dislocations should be considered separately for both re-
gions. Under the applied. stress Uyz = -0, the equilibrium configura-
tion of dislocations is determined by the following set of dual singular

integral equations:

G, P | G b
11 1 k : 22 11-k. _

1 2
(x e Ll)>
G,b. - G,b
171 | L+k 22 1 -k -
2n [E:E] £(t) at + J(. on [x-t * X+t] £(t) at = %2
Ly L, : /
(x ¢ LE)'
(1v.2-5)
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It is noted that only two terms in the above equations are singular and

are understood to be Caucy principal value integrals.,

In discussing cracks, an additional condition is needed in order to
determine the solution completely., This is the compatibility condition
of displacement. Derivation of this condition is to be discussed in the

following paragraphs.

The z-component of displacement at (x,0) due to a single right-

hand screw dislocation at. (t,0) is given below:

(L) +t>0
bl -1 ¥ 1y
wl(x,y,t) = 5= [tan = +k ten -x—ﬂ;] (x > 0)
W(X}y’t)=
b
- _L -l ¥ -
W2(x,y,t) = 5= (1-x) tan w (x < 0) (1v.2-6)
(2) t<oO
°s -l ¥y
WB(X"y’t) = —2—5'(l+k) tan -};_—_t' (X > O)
by -1y -1y
W)_I_(X,y,‘b) = 5 (tan el k tan pava (x<0) .

(1V.2-7)

Consider the closed circuit around the crack (Fig. IV-2). The dis-

placement couponents along the path are:
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(1) x>0

W(x,¢) = fL wy (%, -, 6) £(t) at + / wo(x,€,) £(t) at

1 Ly

Wh(x,+e) = jgl wl(x,+e,t) £(t) dt +/;2 W3(x,+€,t) f£(t) dt

(2) x<0o0

Wl(x.,-e) = /I: ‘wz(x,-e,t) £(t) dt +f Wu(x.,—e,t) f£(t) at

1 L,

W, (x,4e) = le w (e ) £(8) at + 42 w, (ke ) £() at

Assuming that no dislocation entering nor leaving the crack, the integra-

tion of displacement about the closed path should vanish:

0 1l 1 -1
L Wl(x,-e) dx +£ W3(x,k-e) +'[; Wbr(x,+€) dx +é‘ W2(X,+€) dx

In the limiting case where ¢ -+0, the above equation leads to the

condition

b =0, .2-8
jgl blf(t) at + 'l]; 2f(t) dt (v )
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Again this condition can most easily be derived from the crack opening

displacement consideration.

Equations (IV.2-5) 'and (IV.2-8) are necessary to determine the solu~
tion completely. A method of solving the dual singular integral equations
is first discussed. It is then shown how the solution of integral equa-

tions can be incorporated with the compatibility condition.

@

First, a new function is defined as:

 Gyby (%) (x e L)
g(t) =
2 b t(h) (x € L,) (17.2-9)

and f(t) can be found if @(t) is known. By employing the function

#(t), the coupled integral equations can be rewritten as:

9 (x ¢ Ll)
;—tli—f?-(-,%-%-}—}i+%f¢(t) K(x,t) dt =
b . (x € L)
&) Xe by
(1v.2-10)
where
-k
}_C-I-—'E (X € Ll » t € Ll)
k
| pra (z e L, , te L2)
K(x,t) = K (1v.2-11)
b (xel, , te Ll)
k
.}—C.:.l'.'_t— (X € L2 ) t e L2)
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In Eq. (IV.2-10), the singular and non-singular parts of integrals
have been separated. The kernel expression K(x,t) is non-singular as

can be seen from Eq. (IV.2-11). PFurther defining:

91 (x e L)
g(x) = - ;15 fg(t') K(x,t') at' + (1v.2-12)
L o, (xeL,)

. Equation (IV.2-10) becomes

1

.}_'4 PE) 3 g(x)  (xe1) - (1v.2-13)

The physics of the problem requires that f£(x), hence @(x), is un-
bounded at the end points of L. If g(x) is considered temporarily to
be known, then Eq. (IV.2-13) can be formally inverted according to the
procedure outlined in Appendix A. The resulting equation is a Fredholm

integral equation of the second kind:

g(x) =

(Tv.2-1k)

R, (x) fJRg(t) g(t) at .
+
iRy (x) L b-x VR (x)

where Rl(t) =1, R2(t) = (t-1)(t+l), and c is a constant to be

determined otherwise.

By carrying out the integration in Eq. (IV.2-14) and defining
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G.b

o1 S ]
?l- g(x) = —"0-_':;-‘- f(x) (x e Ll)
o(x) = (Iv.2-15)
2 - 220 (xe )
05 .0'2 2

the above integral equation becomes

o(x) =_—}-‘§ _/L‘K(x,t) o(t) dat + Fl(x) + ch(x) (1v.2-16)
T
where
Kg(x,t)_ (-1<t<0)
K(x,t) = (Iv.2-17)
K, (x,%) (0< t < +1)
K, (x,5) = = {ﬂ -2 i —— [(1-t2)n‘1 (122 (1exD) e
-X =1
r (1-t2)(1-x2)"2 & (1-x2)“'1]}
Ky (%) ifﬁ;@ {"“ -2 i 'é'n%'I [(l'tz)n_l R R ¢ P FRRES
n=1
£ (1-t2)(1-%2)"2 & (1-x2)“'1]}
Fy(x) = l_i’e
Fe(X) ) 1 f x2
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and.

1 (x ¢ Ll)
91
e =9 (1v.2-18)
2¢c
2
(@;- (x ¢ L2)

The constant E have different expressions in terms of constants
¢y and cy in regions Ll and L2 respectively. By employing the con-
tinuity condition imposed at the interface, howe#er, it can be shown that
these two expressions are in fact the same., It has been assumed that at
the welded interface the z-component of displacement is continuous., This

implies that for the dislocation distribution function we have:
blf(0+) = b,£(07) , (1v.2-19)

namely,

o(0*) - e(07) =0 . (TV.2-20)

Substituting the values of @(O+) and ®(0°) from Eq. (IV.2-16) into

the above relationship, we obtain

2c2

—= (-l<x<1) (Iv.2-21)
0'2 -

2cl
C = e—
o1

When k approaches zero, the medium becoming homogeneous, the
expression of (IV.2-16) check with the solution of cracks in homogeneous

materials.
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Equations (IV.2-8), (IV.2-16) and (IV.2-21) are sufficient for the
determination of f(x) and the constant c. By using the constant value
of ¢ from Eq. (IV.2-16), the Fredholm integral equation of (IV.2-8) can

be written for the whole region L as:

o(x) = -1}‘2- ./L-K(x,t) o(t) at + Fl(x) + cF2(x) (xeL).
= 4

(Iv.2-21)

To incorporate this equation with the compatibility condition, &(x) is

considered to be a linear combination of two functions:

o(x) = <I>l(x) + c¢2(x) (Iv.2-22)
where
(I>l(x) = ;kg- [K(x,t) @l(t) at + Fl(x) (Tv.2-23)
and
@2(}() = f-g- '/L.K(x,t) @2(’5) at + Fg(x) . (Tv.2-24)

@l(x) and @2(x) have to be solved separately. Substituting the known
values of @l(x) and @2(X) into Eq. (IV.2-8), the constant c can be

obtained and Eq. (IV.2-22) gives the complete solution.

A method of solving Egs. (IV.2-23) and (IV.2-24) is now outlined as

following. As noted in Eq. (IV.2-17), the kernel of the Fredholm integral
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equation is degenerate. 1In principle, the infinite series expression of
the kernel can be truncated and the integral equation with degenerate
kernel can be solved analytically. However, because of the different
expressions of the kernel in Ll and L2, this process can be very
tedious. Instead, a direct procedure as outlined in Appendix C is em-
- ployed. The definite integral on the right-hand side of Eq. (IV.2-16)
is first approximated by a quadrature formula. Then the integral equa-
tion is transformed‘into a system of linear algebraic equations. The

number of equations is equal to the number of subdivisions, n, in L. The

system of linear equations can then be solved numerically.

In the process of approximating the integral portions in Egs. (IV.-
2-23) and (IV.2-24) by quadrature formulas, the Simpson's rule has been
used, This approximation is pretty accurate and dependable. Tt is due
to the fact that the integrands in the above equations are well behaved

polynomials,

In the present analysis, numerical solution of the Fredholm inte-
gral equations have been carried out for n=102. Solution for the plate
under uniform strain €, cen be obtained simply by defining 0 = Glea
and 0y = G2€a in the formulation.

Figure IV-3 shows the dislocation distribution function for cracks
under both uniform strain and stress. It is obvious from Fig. IV-3 that

the distribution function is discontinuous at the interface if the lattice

parameters of the two media are different.

Before leaving this section, it is worthwhile to examine the be-

havior of the distribution function at both ends of the crack, From
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Fig. IV-3. DISTRIBUTION FUNCTIONS OF DISLOCATIONS
REPRESENTING CRACKS CROSSING A PHASE BOUNDARY.
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Eq. (IV.2-17) we notice that the function &(x), hence f(x), wvaries
with the inverse square root of the distances from the crack tips as x
approaches +1. This can ‘also be shown readily by plotting @(x) as

functions of the distances from the crack tips (Fig. IV-4).

As a conseguence, we can write

o(r) Ar~% (1v.2-25)

for the crack tip (1,0) -and

~%

]

o(r) = Br (Iv.2-26)

for the crack tip (-1,0). 1In the above equations, r denotes the distances

from the crack tips. The constants A and B can immediately be obtained-

from Fig. IV-k.

Moreover, in applying Eq. (IV.2-8) to the functions Qi(x) and
@2(x), numerical integrations have been performed. To circumvent the
singularities of the functions at x = +l1, the ranges of Ll and L2
used are 0< x< 0,999 and -0,999 < x <0 respectively. The contribu-

tions of the portions of @l(x) and @2(x) neglected are now investi-

gated. At the crack tips the function @l(r) behaves as in Egs. (IV.2-25)

and (IV.2-26). Constants A and B are obtained from plots of fn @l(r)
vs. fn r at both crack tips. Similar expressions are valid for @2(r).
By carrying out the integration of Eg. (1v.2-8) for -1 < x <-0.999 and

0.999 < x <1, it is found that the error involved is negligibly small.
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3. Crack Opening Displacement

The crack opening displacement &(x) can readily be obtained by

integrating the dislocation distribution function:

20

5(x) = CTl-—ﬁa—e— '/; o(t) at . (1v.3-1)

Although the dislocation density can be discontinuous at x = 0, the
crack opening displacement is a continuous function in the entire region

of L.

Numerical results of crack opening displacements are shown in
Fig. IV=5. The validity of the solutions can be readily checked by the
symmetry of curves, for k = .4 and %k = -.4. The broken line in the
middle shows the crack opening displacement in a homogeneous medium. By
éomparing these curves, it is noted that larger elastic relaxation takes
place in the comparatively softer phase. However, the deviation from the

solution for a homogeneous medium is small,

Again, by employing the argument similar to that in the last section,
the error involved in the numerical integration of Egq. (IV.3-1) can be

estimated.,

The behavior of the crack opening displacements 38(x), near crack
tips can easily be determined., From the last section we have learned
that @(t) near crack tips varies with the inverse square root of the
distances from the tips. Since crack opening displacements are derived
from the integration of ®(t), it is legitimate to conclude that close
to the crack tip, ®(x) wvaries with the square root of the distances

from crack tips.
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L, Stress Fields at the Crack Tips

It is known that for cracks imbeded in homogeneous media, displace-

ments at the crack tips have the general expression [41]:

K %
B 2o L) -
W= —= [“] sin (1v.3-2)

where r 1is the distance from the crack tip and 6 is the angle made
with the x-axis about the .crack tip. KIII is the stress intensity

factor., At the crack surface, 0 = xn,
K %
II [2r
W= == [—] . (1v.3-3)

It is noted from the above equation that in a homogeneous medium
the crack opening displacement varies with the square root of the distance
from the crack tip. This in turn implies that for crack crossing a bi-
material interface the stress singularity at the immediate vieinity of the

crack tip behaves as if the crack were imbeded in a homogeneous medium.

Hence, the stress expression at the tip of a crack in a homogeneous

medium can be employed for our problem:

o = .:.K::.‘é._ sin -8-.
Xz (QKT)% 2

K .
o = ——EELr cos 2 (1v.3-k)
yz (.23tr)/2 2
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where 6 1is measured from the x-axis. The stress intensity factor,
KIII’ has different values at the two crack tips, and these values can

be determined by Eq. (IV.3-3) combined with the data of Fig. IV-h.

Although the types of stress singularities are the same at both
crack tips, the strength of these singularities can be different. It is
found that when k = -.4, the magnitude of the stress intensity factor,
Kop 8t the ‘crack tip (1,0) is about twice of that at the tip (-1,0).
This leads us to the following conclusion: for a crack lying across a
phase boundary, the stress concentration near th¢ crack tip in the com-

paratively harder phase is higher than that in the softer phase.

5 Discussion

The solution of the present problem can also be achlieved by employ-
ing the method of linear elasticity theory. Boundary value problems can
be set up for both regions, for x>0 and x< O (Fig. IV-6). It is
required that O, and the z-component of displacement, W, be contin-

uous at the interface.

The problem is complicated by the fact that both O,y and W are
unknown on the boundary x = O, Moreover, the boundary conditions on
y=0 are mixed. It is suggested that both O, and W can be assumed
in the form of Fourier series. By taking a sine transform on the vari-
able x of the Laplace equation and applying the boundary conditions on
y=0, one obtains a set of dual integral equations in each region. These
two sets of dual integral equations should be solved separately for W

while the continuity of T,x at the interface is also satisfied.
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The difficulty in solving this problem by elasticity theory is due
to the unknown boundary conditions at x=0. However, this difficulty is
circumvented in the present analysis. Using the stress field of screw
dislocations in a two phase medium, the continuity conditions at the in-
terface have already been built in the stress expressions. Furthermore,
since dislocation distributions in both phases are treated as one un-
known function only one set of dual integral equations has to be consi-

dered.

The dislocations representing the crack can also be viewed as dis-
locationslon a slip band crossing a grain boundary. This can be justi-
fied simply by specifying an appropriate resistance stress to the motion
of dislocations on the slip band. Hence, the mathematical procedure em-
ployed in the present analysis is equivalent to that of solving a dislo-
cation pileup problem. The only term needed to be changed in Eq. (IV.2-5)

is the term of externally applied stresses.

Finally, a crucial point in the derivation of Egs. (IV.2-8) and
(Iv.2-20) needs to be pointed out. It is noted that in deriving both
equations, the effective stress expressions of both phases have been

employed. The implication is two-fold.

First, if the stress on the middle plane of the plate, due to some
internal sources, is othef than 01 for x> 0 and 0p for x< 0,
Eq. (IV.2-8) will not hold. This implies that dislocations have to enter
or leave the crack in order to reach equilibrium. Secondary, any dis-
continuity of displacement at the interface should be taken into account
in the formulation of the problem. This can be done by setting blf(0+) -

bef(o_) equal to the magnitude of this discontinuity.
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CHAPTER V

AN ELASTIC-PLASTIC CRACK IN A TWO-PHASE SYSTEM

1. Introduction

The matrix phase in a composite material serves several important
functions [1]. It binds the hard particles together to protect their
surfaces from flaws and transfers both local and nominal stresses to the
hard phase. The matrix sbould be inherently notch-tough, so that cracks
initiated at the brittle phase will be blunted When they reach the soft

matrix.

Blunting of crack tips can be caused by either the splitting of
interface or the plastic relaxation in the matrix. Typical observations
in these respects can be found in the work of Cooper and Kelley [45].
They have studied how a material reinforced with aligned fibers fails at
the root of a notch by the propagation of transverse cracks. The com-
posite examined consists of brittle tungsten wires in vacuum-cast copper
with very strong interfacial bonding. This system constitutes an extreme
combination of brittle and ductile phases. A representative series of

micrographs are shown in Fig., V-1,

It is noted that the ductile matrix phase has been plastically
deformed at the crack tiﬁ. The plastic strain concentrated at the crack
tips will cause subsequent failure of the matrix phase. As a consequence
of these expgrimental observatidns, we are led to believe that a realis-
tic discussion of problems concerning crack propagation in most metal-
matrix composites should consider both the elastic and plastic behavior

of constituent phases.
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In this chapter an idealized model of a mode IIT elastic-plastic
crack in a two-phase medium has been set up. Relation between the ap-
plied stress and the length of plastic zone has been found for various
ratios of rigidities. By employing the critical crack opening displace-

ment criteria for fracture, the fracture load can be determined.

24 Analysis
Consider a plate composed of two elastic semi-infinite strips

welded together at the inferface. The shear modulus is G, for x>0

1l

and is Gé for x< 0., Let a crack in phase 1 Be situated on the plane
y=0 and perpendicular to the interface. To simulate the crack in laminar
structures, the crack length is considered to be fixed and equal to unity.
If phase 2 is much softer than phase 1, it 1s a valid assumption that the
length of plastic zone ahead of the crack in the hard phase is much smaller
than that in the soft phase and hence can be neglected. The length of
plastic zone in phase 2 is set egual to b which varies with the applied
stress (Fig. V-2). It has been pointed out in Chapter I that the asso-
ciated displacements of both cracks and slips band are similar to those

of dislocations. Consequently, linear elasticity can again be employed

in the present analysis by representing the non-linear region as a packet

of continuous dislocations.

There are three kinds of stresses needed to be considered in dis-
cussing the equilibrium configuration of dislocations. These are the

dislocation stress, o

3’ the effective stress on dislocations due to an

externally applied stress, 0, and the friction stress A
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If the thickness of the plate is much larger than the length of the
crack, the medium can practically be considered as "“infinite." Hence, the

stress field of dislocations in an infinite medium can be employed. Con-

sider right-hand screw dislocations at (t,0) with Burgers vector b, for

t >0 and Eé for t < 0. The non-vanishing stress component Osy at

(x,0) is:
(L) t>0
GyPy 1,k
s 4 °n X-t X+t (x> 0)
=
y GBy g 4 (V.2-1)
2 X - % (x <0)
(2) t<oO
G.b
22 1 -k
2% X -1t (X > O)
o = (v.2-2)
vz )9% 1k (x < 0)
2 \x -~ t x+t) .

The effective stress on the middle plane of the plate due to an
uniformly applied stress Uyz = -0, is o = -cé(l-k), for x>0 and
o, = -gé(l+k), for x < 0 (Chapter II). The resistence stress to the
motion of dislocations, Oy» vanishes inside the crack region and is set

equal to the yield stress of the material in the second phase. The me-

dium is also assumed to behave perfectly-plastic.
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The pastic relaxation at the crack tip is assumed to be caused
totally by the injection of dislocations from the crack tip into the slip
lines. Relaxation due tqQ absorption of opposite sign dislocations to the

crack tip is not considered in the present analysis.

Let f(t) be the unknown distribution function of dislocations

representing the crack. The regions 1., and L, are defined as

1 2
0<x<1 and -b < x< 0 respectively. The union of Ll and L2 is
denoted by L. Because of the different expressions of cyz in Ll and
LE’ the equilibrium of dislocations should be considered separately for

both regions. Under the applied stress Gyz = =0, the equilibrium con-
figuration of dislocations is determined by the following set of dual

singular integral equations:

G.b G,b
171 1l k 2211 -k
vé 2x [x-t +x+t]f(t) dt+£ 2n [x-t]f(t) at = oy

1 2
(x e Ll)
G.b G.b
1°1[1 +x 2 2[ 1 -k ] _
f 2ﬂ[x—t]f<t)dt+/ 2 Lx % txr e it) at =0, -0y
L, L,

(x e L2) . (v.2-3)

It is noted that only two terms in the above equations are singular and

are understood to be Cauchy principal value integrals.

Since it has been assumed that plastic relaxation is not due to the
absorbtion of dislocations, there is no dislocation leaving nor entering
- BN
the region L. As a consequence, the compatibility condition, Eq. (IV.2-8),

derived in the last chapter is still wvalid in this case:
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f blf(t) at +f bef(t) dt = 0 , (v.2-k)
L L

1 2

Equations (V.2-3) and (V.2-4) are sufficient to determine the solu~-
tion completely. A method of solving the dual singular integral equations
is first discussed. It is then shown how the solution of integral equa-
tions has to be incorporated with the compatibility condition in order to

find the magnitude of the applied stress under which the plastic zones is

extended to a length Db.

First, a new function ig defined as:

% Glblf(t) (x ¢ Ll)
g(t) = (v.2-5)
-'-%- G2b2f(t) (x ¢ Lg)

and f(t) can be found if @(t) is known. By employing the function
@(t), +the left-hand side of the coupled singular integral equations can

be rewritten as:

o (x € Ll)

;iL_lf A%“L%{/ g(t) K(x,%) at =
L L 0, = O

2 o] (x e L2)

(V.2-6)

where
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=TI (xeLl, teLl)
k
3 (xeLl, teL2)
K(x,t) = (v.2-7)
-k
a (xeLg, teLl)
k
— (x ¢ Ly, te Le)
and
- 1
G2 + G

In Eq. (V.2-6), the singular and non-singular parts of integrals
have been separated. The kernel expression K(x,t) is non-singular as

can be seen from Eq. (V.2-7). Further defining:

oy (x ¢ Ll)
x) = == t') K(x,t') at'
g(x) me;zx)( pae) L ey
(v.2-8)
Eq. (V.2-8) becomes:
%A ,Q'_L___ttz it = g(x) (xe L) . (v.2-9)
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The physics of the problem requires that f(t), hence @(t), be bounded
at (-a2,0) and unbounded at (1,0). If g(x) is considered temporarily
t0 be known, then Eq. (V.2-9) can be formally inverted according to the

procedure outlined in Appendix A. The resulting equation is a Fredholm

integral equation of the second kind:

" R (x) ij (t)
px) i N Ry (x) L M) b -

where Rl(t) =+t + b and Re(t) =t - 1.

The kernel of Eq. (V.2-10) is very complicated since it involves
principal wvalue integrals. The integration has been carried out for dif-
ferent ranges of plastic zone length, b. The resulting form of integral

equations are summarized in the following:
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(1) b<1

G.b
11 £(x) (x € L)
. 9i { a 1
o(x) === g(x) =
g
a G2b2
p £(x) (x € L2)
a
- X f@(t) K(x,t) dt + F (x) + ¢ F () (V.2-11)
n YL
where
K, (x,1t) (< t< D)
K(x,t) = {K,(x,t) (b<t< 1) (v.2-12)
K, (x,t) -b< t<0)

: 1| [ [1=x _[1+t)_ [1-x Woex +Nb(1-x)12
Kl(x’t) “x + t[:zn(b + 1 ( b+x b-t) b+x o lx‘
1+t [b-t +~fb(1+t)]2] [x+b
bt |t 1-x
1 [1-t _ [1=x 1x , Wb +Vb(-%1°
+ x—t[ n(b+1) ( _E:E b+x) +\/b+x n lx|
1=t m[«/b+t +'\/b(1-t)]2] [x+b
b+t |t] 1-x
1 [1+t (x _ . -1 2b - t + bt
K00 =% [ b (E T s t(1+b) )
[1-x _ . INbix +Nb(1-%)] ] [x+b
+ o (,Zn(b+1) in 'XI Z> Tx
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1-t _Jl—-x )tjl-x [Wbix +b(-%)1°

1
R [ﬂn(bﬂ)( brt Nbix /o= T x|

[1-t Wo+t +Jb(1—t)]2]Jx+b
- /n
b+t ]tl 1=-x

Sl 1-x _ [1-t 1=t , Wbt + Vb=t 12
K (x,0) = 5 [’zn(bﬂ)(«/mx Jb+t >+'\/ fn

b+t It]
/1-x [«/b+x +\fb(1-x)]2]Jx+b
-— zn
b+x 1-x

||

1 1+t [1-x 1-x [N btx +~x/b(1-x)]2
T Ox+t! [zn(b+1)( b-t \/b+x >+N/b+x n Ix]

_\/1+t . Wo-t +@(1+t)]2]Jx+b

b-t n |x| 1-x

[z ax( e -11-b _ Wb +b(@m 1P
Fl(x) = -2 = " ( T Sin T T in x| (b+D)

F (x) = [zt _ 2 ( [xtp . 1-b _ o [NxD +b(1-01%

22 NI T w W imx 1+b |x| (b+D)

and

o
c. = EE . (v.2-13)
a
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(2) b =1

i (x € L)
24 a
B(x) = = @G(x) =
o
a szz
- £(x) (x € L2)
a
k
= -—-2—/ K(x,t) o(t) dt + FS(X) + czF4(x)
b1 L
where
K4(x,t) (t € Ll)
K(x,t) =
Ks(x,t) (t € L2)
1 /1—x | x| [1+t t - [1ax
K (x,t) = [ in - 7= in ] —
4 x+t 1+x 1+\/_1—_x2- 1-¢ 1_l_’\/'ﬁz_lx

L L [ -t t _ (=, | %] ]
x-t 1+t 1 ++/1-t2 1+x 1 + :/ 1—x2

1 1-x
KS(X’t) T ot-x [ 14x

1 +a1-x2 NI T 1t

o — L%l [ ] ]

1| it
t+x [N1-t

In Itl _ 1-x n ]X] ] [14x
1 ++1-t2 1+x 1 +1x2 V17

F3(x) = =2 {%—E +g ﬂn—-—-]-)-c-l——
x = 1 +41-%2

1+x 2
F4(X) “N1-x T &

and

2]
i
»% [0

| x|
1 ++41-x2
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(3) b>1

G.b

‘\ tl f(x) (x € Ll)
2i J 2
o(x) = ry g(x) =
a
G b
2 2 £(x) (x € LZ)
a
= FL K(x,t) o(t) dt + F5 + 03F6(x) (v.2-17)
where
K (x,t) O<t<1)
KCx,t) = (K (x,t) (-1< t<0)
Kg (x,t) -b< t<-1) (v.2-18)
1+t 1+t Wbt +Nb(1+t)12
K6(x,t) = [zn(b+1) (\/b+x ,\/ ) J In Itl

\/1—x p N b+x +Jb(1—x)]2] [x+b
el n
b+x X 1-x
1-t Nb+x +~/b(1—x)]2
zn(b“)(«lmt Jb+x) . n x|
Y T +~/b(1—t)]2] /'x+b
b+t [t 1-x
1 [N b+x +«/b(1—x)]2
K7(X,t) = T[ﬂn(b+1) ('\/b+x \/b+t ) ﬁn lxl

2
+J—t n Wo+t +b(1-t)1] ] x+b
b+t | N
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it _ [Ix /1+t Wbt _+ N b(1+£)12
[,@n(b+l) ( b+t b+x > [tl
. == WExeNbGon 1 ] J?;:b’
b+x |XI 1-x
- [ —312
) = oo ([ - )i o S

L [t Dot +Jb(1—t)]2]J}1?
b+t

ltl 1-x

- 1[/-t-1 _+Sln-12b—t+bt
x4+t b -t t(b+1)
2
N e Lx (ﬂn(b+1) 4n [Vbix +Vb(1-x)] )] | X+

F_(x) = ~2 X2 il-l-‘-[/?ib Rt G R [J;+b+Ml—x)]2]
5 X = + o 1% TTp

1-x = = [x] (b+1)

_ [x+b _ 2| [xtb . -1 1-b Wxth +Nb(1=x)1 2
Fox) = /1o n[ 1-x 5" Top T A ]

[x]| (b+1)

and

(v.2-19)

[¢]
i
I
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In each of the above integral equations (V.2-11), (V.2-14) and
(v.2-17), there are two parameters which have to be determined. These
are the plastic zone length and the ratio Ub/cé' However, besides the
integral equations, there is an additional mathematical condition avail-
able, namely, the compatibility Eq. (V.2-4). This leads to the conclu-
sion that the plastic zone length, b, and the magnitude of applied
stress, 0, are th independent of each other. From the physics of
the problem, in fact, this is valid. It is understood that the plastic
relaxation at the tip of fhe crack is caused by the injection of disloca~-
tions into the slip lines., Hence, each incremental growth of the plastic
zone requires the injection of more dislocations which push the existing
dislocations further across the load bearing section. Meanwhile, the

applied stress has to be increased correspondingly.

A method of solving the integral equation is now illustrated. Con~
sider the case where the plastic zone length is less than unity. The
value of b is first assumed. ©®(x) in Eq. (V.2-11) can then be re-

written as a linear combination of two functions:
0(x) = 0, (x) + ¢ 0,(x) (V.2-20)

where @l(x) and @2(x) satisfying the following integral equations:

<I>l(x) = -l-‘-é f <I>l(t) K(x,t) dt + Fl(x) (v.2-21)
4 L
and
0,(x) = %fL 2,(t) K(x,t) at + F,(x) (v.2-22)

where K(x,t) has been defined in Eq. (V.2-12). 1In view of the very

complicated form of the kernel in the above integral equations, only
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numerical solutions have been attempted. The definite integrals on the
right-hand side of Egs. (V.2-21) and (V.2-22) are first approximated by
a quadrature formula. Then the integral equations are transformed into
systems of algebraic equations. The number of equations in each system
is equal to the number of subdivisions, n, in L. The systems of linear
equations can then be solved numerically. Details of this procedure are

outlined in Appendix C.

Knowing @l(x) and @e(X), the constant ¢, can be found by the

1
following procedure. First, Eq. (V.2-L4) is rewritten in terms of the

known functions @l(x) and @2(x) as:

/I: bgf(t) at +£ blf(t) at

2 1
i Lixr (° o,(t)] at
= [b [o,(t) + c 0, (t)]at + m[jo- [o, (t) + ¢ 0,

1
+/]; [@l(t) + cl¢>2(t)]]dt =0 .

Then c, can be solved from this compatibility equation as:

0 1

f o, () at + ]lj—l;['g.b o (t) at +f o, (t) dt]

Lo b
¢, = = T .

t fo @2(t) at + %—J_“—E[/O.b <I>2(t) at + ’4‘ @2(1:) dt]

(v.2-23)
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Since @l(t) and @2(t) are known, the constant c, can be obtained
by carrying out the numerical integrations in the above equation. Know-
ing the value of s the complete solution of the distribution function

is given by Eq. (V.2-20).

The same procedure is valid, for b=l and b > 1l. A typical dis-
location distribution function of an elastic-plastic crack in a two-phase

medium is shown in Fig. V-3.

For each value of the plastic zone length, b, the corresponding
externally applied stress, 0,0 can be found from the constant ¢y by
carrying out the above mentioned mathematical procedure. For a certain
two-phase system, or a given k value, one can repeat this procedure for
a set of b values. The corresponding values of applied stress needed to
extend the plastic zone can then be obtained. Results of these calcula-
tions are summarized in Fig. V-4 for various ratios of rigidities of the
two constituent phases. In plotting this figure, we have used the ef-
fective stress on dislocations, instead of the externally applied one.
This effective stress, oy = oé(l+k), varies strongly with the ratio of

rigidities of the two phases (Chapter II) and is the actual stress that

drives dislocations in the yield zone.

The physical implication of Fig. V-4t is now examined. The exten-
gsion of plastic zone-is controlled by two factors, namely, the shear
modulus and the friction stress of the second phase. In a certain com-
posite, or for a given k value, the extension of plastic zone can be
diminished by increasing the yield strength, 0y of the second phase.
On the other hand, for a given effective applied stress on dislocations,
the higher the shear modulus of the second phase is, the shorter the

plastic zone will be.
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Fig. V-3. THE DISLOCATION DISTRIBUTION FUNCTION REPRESENTTING
THE ELASTIC-PLASTIC CRACK (k=-.6).
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Fig._V-h. THE RELATTONSHIP BETWEEN APPLIED STRESSES
AND PLASTIC ZONE LENGTHS.
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Finally, the accuracy of the determination of applied stress for a
given value of b needs to be examined. As can be seen from Fig. V-3,
the ratio -cé(l+k)/bb becomes very large when b approaches unity. This
in turn indicates that the constant ¢y = cb/cé(l+k) becomes too small
to be accurately determined by using Eq. (V.2-4). However, since the
relation between the applied stress and the plastic zone length are ex-
Pected to vary in a continuous manner, it is suggested that curves in

Fig., V-4 for large values of b can be obtained by extrapolation.

3 Crack Opening Displacement

The crack opening displacement &(x) at the crack tip is obtained

by integrating the plastic displacement in the yield zone:

0
5(0) = ./ﬁ bgf(t) at . (v.3-1)

-b

Both ®(c) and b have the same unit as the crack length.

Numerical integration has been carried out for various systems of
composites and for various sizes of plastic zones. The results are sum-
marized in Fig. V-5 where the crack length is taken equal to unity such
that b/c = b. This plot indicates that for a constant length of plastic
zone, the crack opening displacement increases as the rigidity of the

matrix phase decreases.

The plastic zone size, b, is determined by the effective applieg
stress on the plastic zone (Fig. V-4). As the yield zone extends, the

plastic displacement at the crack tip accumulates., This will finally
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lead to unstable crack propagation when a certain critical crack opening

displacement, Sc, is attained.

A thorough investipation of the relationship between fracture load
and critical crack opening displacement is now discussed. Ih Fig. V-4
and Fig. V-5 we have plotted b/c vs.oé(l+k)/co and b/c vs. S(C)Ga/bé
respectively. By combining Fig. V-L4 and Fig. V-5, a linear relationship
between 6(C)G2/Ua, and. cé(l+k)/°b is obtained as shown in Fig. V-6,
In this case the parametgr oy, appears in both the abscessa and the or-
dinate. Both the intercept on the ordinate and_the slope of the lines
increase as the ratio Gg/bl decreases. By measuring the slopes and
intercepts, linear equations can be written for these lines. Then by
rearranging the parameters of these equations we can get a set of equa-

tions governing the variation of g¢(c) with Gé/cb:

0.67 (E)Q (k = 0)

o\ o) -1
a) , 230 & K = V.3-2)
5(c) = { 0.98 (E;) T 5 ( 3 ) (
’ T \2 o
0.97 & . = -0.6)
1.1 (2] + —= (k = 0.
(o‘o> 1+ k 0y

These are depicted in Fig. V-T7. Both linear and second order terms ap-
pear in the above equations. Tt is noted that at low applied stress the

contribution of the second order term is small.

Now we proceed to consider several practical composite systems.

The matrix phases where the plastic relaxation tekes place are Aluminum
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Fig. V-6. LINEAR RELATIONSHIPS BETWEEN S(C)GE/O'a AND
O'a(l+k)/0'0.
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alloy TOT75-T6 and 2024-T3, The elastic moduli and yield strength of

these materials are given in the first four columns of Table V.l. The

fracture toughness; Glc - is calculated from the 'ch values and is
5

shown in column 6. Knowing Glc’ the critical crack opening displace-

ment, ®(c), can be approximated from the equation [50]:

Gy, = 20y8(c) . (v.3-3)

These are shown in the laét column of Table V.l, ©Suppose that the rein-
© forcements dispersed in the Aluminum alloy matrices are fibers or wires
of Boron, Tungsten, Beryllium, Stainless Steel (18 Cr - 8 Ni) and A1203.
The shear moduli of these materials are given in the second column of
Table V.2, The ratio of rigidities of the hard and soft phases are shown
in column 3. Notice that the matrix phases, Aluminum alloys T0T75-T6 and
202h-T3, have the same rigidities. In columns b and 5 of Teble V.2 the
quantities 6(0)(G2+Gl)/2°b of each composite system are evaluated for
the two matrix phases using the values of 8(c) from Table V.l. From
these values of 6(0)(G2+Gl)/200 the corresponding critical fracture

load can be readily obtained from Fig. V-7 by extrapolation.

In Table V.3, the fracture stress of composites are listed for
various crack lengths. We first consider the case where the crack length
is one inch. For these hard phase materials under consideration, the
eritical fracture stresses range from 0.06 to 0.12 of the yield strength
of the T7075-T6 Aluminum alloy and from 0.52 to 0.59 of the yield strengt@
of the 2024-T73 Aluminum alloy. If the hard phase is of the same material
as the matrix phase, larger fracture stresses are allowed as shown in the
last two columns of Table V,.3.
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Table V.2

5C(G2 + Gl)/EGb VALUES FOR DIFFERENT
COMPOSITE SYSTEMS

Gy GGy GGy *¥
Material | (106 iy |Gp/Cp ® 2o, % 2o,
(in) (in)
B . 26.3 [48] 0.3 0.1k 1.3
W S 23.52 0.33 0.12 1.15
Be 20.45 0.38 0.11 1.05
Stgigiiss 22,5 0.3k 0.11 1.12
A1203 34,7 0.225 0.16 1.6
T075-T6 7.8 [b9]] 1.0 0.06
2024-T73 7.8 [k9] | 1.0 0.6

*
Bé and o, for Aluminum alloy T075-T6

%
5, and o for Aluminum alloy 2024-T3
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The case of a crack of length 0.l inch in the T075-T6 Aluminum
alloy matrix is also described in the second row of Table V.3. These
values are, as expected, considerably higher than those for the crack
length of one inch. Note that the ratio cé/co in the composite rela-
tive to the pure TOT75-T6 alloy, increases as the crack length decreases.
This indicates that the detrimental effeect on fracture strength due to
the introduction of second phase is less pronounced as the flaw size
decreases. If the éOEh—T3 Aluminum alloy is used as matrix material the
ratio of OA/UO is higher than unity for a crack of 1/10 inch. Hence,

the result is not shown here.

Several important conclusions concerning the fracture of composite
materials have been reached in this and the last sections. These are

summarized as follows:

(1) In a certain composite system, or for a given k value, the
extension of plastic zone can be diminished by increasing the yield

strength of the second phase material.

(2) For a given effective applied stress on dislocation, the higher
the shear modulus of the second phase is, the shorter the plastic zone will

be.

(3) For a constant length of plastic zone, the crack opening dis-

placement increases as the rigidity of the matrix phase decreases.

(4) TFor a certain composite system, or a constant k value, the:
fracture stress at low applied loading can be increased by improving the
toughness of the matrix phase. This is clearly seen in the first and
third row of Table V.3.
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(5) The bi-material system under consideration is an idealized
situation., For fiber or laminated composites the critical crack opening
displacement value, Sc,« is lower than the value used in the above cal-
culation. The reasons are two-fold. First, the fracture toughness
values of the matrix materials used here are those of homogeneous mater=-
ials., In a composite, the plastic deformation of the matrix material is
inevitably constrained by the neighboring hard fibers or laminas. This
effect certainly lowers the toughness value. Secondly, in a practical
composite system, the ppésence of a large volume fraction of hard phase
materials tend to lower the ductility of the whole system. As a con-

sequence, the composite tends to be brittle and &(c) value is lowered.

L, Discussion

In the present analysis, it is assumed that the plestic zone is
confined to a thin layer. The validity of this assumption is now exam-
ined. It is noted that in a homogeneous medium, the resultant shear
stress at the tip of a mode III crack varies only with the radial dis-
tance from the tip. Analysis of an elastic-plastic crack in a homogeneous
medium has been carried out by using both dislocation and classical plas~-
ticity theory [T,14]. In the dislocation theory, the plastic zone is
assumed to be confined in a thin layer. The plastic zone considered by
Hault and MeClintock for & perfect-plastic solid is a circular region at
the erack tip. ©Since the length of plastic zones deduced from both
theories are in good agreement, it has been concluded that.the length of

plastic zone is insensitive to the shape in homogeneous medium (Chapter I).
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There has been no solution obtained from classical plasticity theory
for the problem considered in this chapter. Hence, there is no exact so-
lution of the shape of plastic zone ahead of the crack in a two-phase
medium. However, as far as the pléstic zone length is concerned, it is
not unrealistic to assume that the plastic zone is confined to a narrow
region, coplanar with the crack. This is due to the fact that just as in
the case of a homogeneous medium, the stress field induced in the neighbor-
ing phase due to a cfack against an interface also varies only with the

radial distance from the crack tip.

One further justification of the assumed plastic zone shape has
been given by Cottrell [5]. The insensitivity of plastic zone length to
the shape of zone is essentially because the interactions of distant dis-
locations are not greatly altered in magnitude by changing their relative
coordinates from x +to (x + y), provided x = y. Further, the plastic

displacement ©(c) at the tip is always of the order:

8(c) = 2be, = 2b =

where SR is the strain in the plastic zone of length .
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CHAPTER VI

SUGGESTIONS FOR FUTURE WORK

The dislocation model of an elastic-plastic crack is very important
in studying fracture of two-phase solids. Besides the problems discussed
in the last five chapters of this dissertation, what needs further re-

search is outlined as follows:

1. It is necessary to consider the cases where the second phases
are of finite dimension. We have taken into account the crack-
ing of a thin hard surface film with plastic deformation in
the neighboring phase. This problem is equivalent to the sit-
uation of ecracking a lamina of finite width and having plastic
zones extended into the tough matrix. The width of the lamina
will certainly affect the extension of plastic zoneg and the
crack tip opening displacement.

2. It is believed that further investigation is necessary to
consider the effect on the fracture behavior of a lamina due
to neighboring laminas. In this model we have to consider at
‘least three laminas while the central one is cracked. By
changing the width of the laminas and the spacings in between,
it is hopeful that we can optimize the volume fraction of the
second phase material to get the most efficient service of
the composite.

3. Problems of Modes I and IT cracks are also of great practicéﬁ
importance. We have formulated mathematically the problem in-

volving an elastic crack crossing a phase boundary. Further
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investigation is needed to consider Mode I elastic erack in a
lamina. As elastic-plastic cracks are concerned, it is neces-
sary to take into consideration the gpread of plasticity out

of the crack plane.

128



10.

11.

1z2.

13.
1h,

15.
16,
17.
18.
19.

20.

REFERENCES

A, 8. Tetelman and A. J. McEvily, Jr., Fracture of Structural
Materials, John Wiley, New York (1967).

D. S. Dugdale, J. Mech. Phys. Solids, 8, 100 (1960).

N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory
of Elasticity, P. Noordhoff, Ltd., Groningen, the Netherlands (1963).

F. A, Field, Ph.D. Dissertation, Stanford University (1962).

A. H. Cottrell, Proc. Roy. Soc., A 276, 1 (1963).
A. H. Cottrell, Proc. Roy. Soc., A 285, 10 (1965).

B. A. Bilby, A. H. Cottrell and XK. H. Swinden, Proc. Roy. Soc.,
A 272, 30k (1963).

B. A. Bilby, A. H. Cottrell, E., Smith, and K. H. Swinden, Proc.
Roy. Soc., A 279, 1 (1964).

B. A. Bilby and K. H. Swinden, Proc. Roy. Soc., A 285, 22 (1965).

J. D. Eshelby, Phil. Mag., 40, 903 (1949).

B. A. Bilby, R. Bullough and E. Smith, Proc. Roy. Soc., A 231, 263
(1955).

N, I. Muskhelishvili, Singular Integral Equations, P. Noordhoff,
Ltd., Groningen, the Netherlands (1953).

K. H. Swinden, Ph.D. Dissertation, University of Sheffield (1964).

J. A. H, Hult and F. A. McClintock, 9th Int'l Congr. Appl. Mech.,
8, 51 (1957).

E. Orowan, Rep. Progr. Phys., 12, 214 (1948).

G. R. Irwin, Trans. Amer, Soc. Metals, 40, 1k7 (1948).

A. X. Head, Aust. J. Phys., 13, 278 (1960).

Y. T. Chou, Acta Met., 13, 779 (1965).
E. Smith, Acta Met., 15, 249 (1967).

D. M. Barnett, Acta Met., 15, 589 (1967).

129



21,
22,
23,
2,

25,

26.

27-

28,

29.
30.

31.

32,

33.

3k,

35
36.

37.

38.

E. Smith, Int. J. Eng. Sci., 6, 129 (1968).

J. J. Heuser and B. Chalmers, Acta Met., 9, 802 (1961).
R. Z. Hook and J. P. Hirth, Acta Met., 15, 535 (1967).
J. P, Hirth, W. A. Tiller and G, M. Pound, A Critique on the

Mathematical Theory of Spinodal Decomposition, to be published
in Acta Met.

K. T. Sundara Raja Iyengar, Osterreichisches Ingenieur-Archiv, }§;

H. 3, 185 (1962).

K. T. Sundara Raja Iyengar and R. S. Alwar, Zeitschrift fur
Angewandte Mathematik und Physik, 1k, 34l (1983).

Y. C. Fung, Fundamentals of Solid Mechanics, Prentice-Hall, Inc.,
New Jersey (1965).

E. G. Coker and L. N. G. Filon, A Treatise on Photo-Elasticity,
2nd ed., Cambridge University Press (1957).

J. W. Cahn, Acta Met., 9, 795 (1961).

J. G. Kuang and T. Mura, J. of Appl. Phys., 39, 109, (1968).

A. H., Cottrell, The Mechanical Properties of Matter, John Wiley,
New York (196k4).

B. Noble, Methods Based on the Wiener-Hopf Technique for the
Solution of Partial Differential Equations, Pergamon Press (1958).

E. C. Titchmarsh, Introduction to the Theory of Fourier Integral,
Oxford (1948).

G. ¥. Carrier, M. Krook and C. E. Pearson, Functions of a Complex
Variable, McGraw-Hill, New York (1966).

J. Dundurs and G. P. Sendeckyj, J. Appl. Phys., 36, 10, 3353 (1965).

J. Dundurs and G. P. Sendeckyj, J. Mech. Phys. Solids, 13, 141
(1965).

J. B. Scarborough, Numerical Mathematical Analysis, Johns Hopkins

Press (1958).

L. V. Kantorovich and V. I. Kroylov, Approximate Method of Higher
Analysis, Gostekhizdat (1941).

130



39.
Lo,
43,

Lo,
)4'30
L,
k5.
L6,
l"?n
48,

kg,

50.

S. G. Mikhlin, Integral Equations, Macmillan, New York (1957).

A. R, Zak and M, L, Williams, Trans. ASME, 142 (March, 1963).

P, C. Paris and G. C. M. Sih, Fracture Toughness Testing and
Applications, 30, ASTM, Philadelphia (1965).

M. L. Williams, Bulletin, Seismological Soc. Am., 49, 199 (1959).

G. C. M. Sih and J. Rice, J. of Appl. Mech., 30 (1963).

F. Erdogan, J. of Appl. Mech., 30 (1963).

G. A, Cooper and A. Kelley, J. Mech. Phys. Solids, 15, 279 (1967).

Je G. Kaufman and H, Y. Hunsicker, "Fracture Toughness Testing
at Alcoa Research Laboratories,'" Fracture Toughness Testing and
its Applications, ASTM STP 381.

G. R. Irwin, "Fracture Mechanics," Structural Mechanics, edited
by Goodier and Hoff, New York, Pergamon Press (1960).

H. L. Duengan, Lawrence BRadiation Laboratory, Livermore, California,
unpublished measurements.

Alcoa Aluminum Handbook, Aluminum Company of America, Pittsburg,

Pa. (1967).

A. H. Cottrell, Proc. Roy. Soc., 282, 2 (196k4).

131



Appendix A

INVERSION OF THE SINGULAR INTEGRAL EQUATION

Equation (I.4-1) can usually be reduced to the general form

;%;/L%%% at = #(t_ ) . (A-1)

L is any set of non-intersecting arcs in the complex plane. On L,G(t)

is unknown and @(t) is a given complex function.

Singular integral equations with Cauchy type kernel have been
studied in detail by Muskhelishvili [12]. The deduction of inversion
formulas of the Cauchy integral taken over a union of arcs can be'found
in Chapter II of his book. The corresponding Hilbert problem is solved
in §84 of that book. The underlying concepts of the analysis have been

assembled in a concise form by Swinden [13]. It is introduced here.

Consider any complex function F(X) sectionally holomorphic in
the complex plane outside L. ILet F+(t) and F (t) be the limiting
values of F(z) as z=>1t from positive and negative sides of L

respectively.

First consider the problem of finding F(z) satisfying, on L,

the relation

F+(to) - F(t,) = alt,) (A-2)

132



where G(to) is assumed to be known.’ By wusing Cauchy theorem, it can

be shown that the most general function satisfying (A-2) is

i

Fz) = 51 f—Ll at + R(z) (A-3)

where

A N § j il 1
R(z) z z 8 (z-2 ) z 8,z (A-4)

1 %0 i=0

is a function continuous over I and having a finite number of poles of

orders Myy Moy eoe My end m at the points Zyy Zpy eee z‘z and o

not on L.

Now suppose that G(to) is unknown and is a solution of (A-1).
Also, F(z) is sectionally holomorphic outside L and zero at infinity.
Then the problem can be reformulated as the problem of finding a holo-

morphic function satisfying
F(t,) + F(t,) = B(t,) - (a-5)

To do this the followling definition is mede:
n
ST e VY (o (7L
= I[ (z-a,)"" (z-b)! PP(Z) (A-6)
k=1 :

where 8 and bk are the end points of the kth arc comprising L | and

Pp(z) is a polynominal of degree p with zeros on L. Also it can be
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shown that ¥ = from limiting process., Relation (A-5) then becomes

£ (t,) - £7(t,) = g(t,) (A-7)

in which g(to) is a known function. The general solution of (A-7) is

. given by (A-3).

What remains to be‘done is to construct Xp(z) with the property
that in the finite plene, all zeros of Xp(z) belong to L. Further,
F(z) 1is required holomorphic everywhere outside L. Consequently, £(z)
must be holomorphic except perhaps at infinity. This implies that in the
solution of (A-T7) the function R(z) is no more than an arbitrary poly-

nomial Qm(z) of degree m. From (A-7) it follows that

P(z) = Ix,(2)/exi] ./L' B () (E-2)] at + X (2) qu(2) «  (a-B)

Suppose L is the union of n segments and F(z) is bounded at
a8 given set of end points cl, Cos eee cp and unbounded et the remaining

points, then
b
Pp(z) = II (z - cK) . (A-9)
k=1

Also define

b
R, = II (z - cj)

320
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2n
R, = IT (z - cj) . (A-10)

J=p+l
It follows from (A-6)

Xy(2) = JE (2)/Ry(e) . (a-11)

Also, we have:

X () =X (6,) =Wy (£) /Ry (8,) - (a-12)

Consequently, from (A-2), (A-8), (A-11) and (A-12) we obtain:

NECN
G(to) == _(_732 T

e}

f Ry (t) # g(t) at
L Rl(t) t - to

o}

R (¢, )]*
o GG (a-13)

R, are defined by (A-10)

This is the general solution of (A-l) and Ry» R,

and Qm is an arbitrary polynomial of degree m.

Finally, the requirement of finiteness of F(z) at infinity leads

to the following conditions. Define
1 7 k-1 +
B = éT:i‘_/I: [-£7 7 g(e)/x,(8)] as (A-1h)
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then if p>n, Q(z)=0, A =0 for k=1,2..,p-n and for

P<n, m< n-p,
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APPENDIX B

THE WIENER-HOPF METHOD

There is an extensive array of important problems of which solution
by Fourier or Mellin transform methods requires the use of an ingenious

technique which was invented by Carlman and later developed by Wiener and

Hopf.

Typically, in problems of differentiasl equations with mixed boundary
conditions on the line y=0, - o < x < 0, oOr with boundary conditions on
a half line, one is led via the Fourier and Mellin transform technique to

the following functional relation:
Alx) <I>+(oc) + Bla)¥ (@) + cla) =0 (B-1)

where the equation holds in a strip T <7t< T+ s =0 <0< 0 Of the
complex plane o = ¢ + iT. ®+(a) and ¥ (o) are regular in the half
plenes T > T  and T< T% respectively. The functions A(x), B(a)
and c(a) are given functions of « regular and non-zero in the strip.
T+ and T_ are determined by the information regarding the behavior of
these functions as o tends to infinity in appropriate half planes.

The fundamental step in the Winer-Hopf procedure for solution of

this equation is to find K+Gx) regular and non-zero in T > T_, K_()

regular and non-zerc in T < T+, such that

Ala K+(a)

o) = K@) (8-2)
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Use equation (B-2) to rearrange (B-1) as:
K () 2 (@) +k_(a) ¥_(a) + K_(o) e(a)/B(a) =0 . (B-3)
Decompose K (@) c(a)/B(®:) in the form

K_(2) c(@)/B(@) = ¢, (@) + c_(@) (B-4)

where c+0x) is regular in 7T >1_, c_ (@) is regular in T < T, The
decomposition involved in Eq. (B-4) is a procedure based upon the Cauchy's
theorem. The decomposition in Eq.,(B-E) as a quotient is equivalent to
the decomposition of /In(A(x)/B(a)) as & sum. If decomposition involves
an entire function, then it may be convenient to use an infinite-product
expression for that entire function, so as to obtain at once its two ap-

propriate factors.

Combine Egs. (B-3) and (B-4) so as to define a function J(a) by

J{(a) K+(o.') <D+(a) + c+(oz)

K (o) ¥_(a) - c_(a) . (B-5)

By analytical continuation, it is obvious that J(®) is an entire

‘function on the ¢-plane. Now suppose that it can be shown that:

|, () o, (@) + c+(ot).‘ <l 8 ame , T>T_

| |k_(@) ¥_ (&) + e_(a)] < Ial»q as O=o ,  T< T . (B-6)

138



Then by Liouvill's theorem J(a) is a polynomial P(o;) of degree less

than or equal to the integral part of min(p.q), namely:

K+(a) <I>+(oz) + c+(oz) P(a)

K (@) ¥_(@) + c_(a)

-Pla) . (B-7)

These equations determine @+ and Y_GJ) to within the arbitrary poly-
nomial P(a), i.e., to within a finite number of arbitrary constants
which must be determined otherwise. Equation (B-7) then determines ®+01)

and Y_Gx).

It is noted that any partial-differential-equation boundary value
problem which leads to a functional equation of the Weiner-Hopf type (B-1)

[
can always be recast as an integral equation of the type

fm K(x=-t) f(t) dt = f(x) (0<x<w). (B-8)
h _

This can be achieved simply by taking the inverse transform of Eq. (B-1)
and use the convolution theorem. Consequently, integral equations with
kernel function of the type K(x-t) can be solved by taking a Fourier or
Mellin transform to recast it in the form of Eq. (B-1) and then proceed

to solve in the same way as outlined above.
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APPENDIX C

NUMERTICAL SOLUTION OF LINEAR INTEGRAL EQUATIONS

Consider the type of integral equation

b
o(x) = A f K(x,t) o(t) dt + FP(x) . (c-1)

a

The replacement of the given kernel by a degenerate one makes it possible
to find the solution in the form of an expression which is valid for the
whole interval a < x < b and for arbitrary values of the parameter A.

A serious drawback of this method is the necessity of calculating the
guadratures, which are sometimes rather complicated and quite numerous.
This objection, moreover, applies also to the method of successive approx-
imations. It is the present purpose to introduce a method for the ap-
proximate solution of integral equations which does not involve the cal-

culation of quadratures [37,38,391.

This technique is based upon the modified method of Goursat and
Nystrom., The method consists essentially of replacing the unknown func-
tion under the integral sign by a polynomial over an interval, and then
evaluate the integral at certain specified points within interval of

integration.

The first step in solving Eq. (C-1)-is to approximate the definite
integral on the right-hand side by a quedrature formula. The resulting

formula has the general expression
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o(x) =‘F(x) + (b-a) [ciK(x,tl)_Q(tl) + c2K(x,t2) @(tg)
+ aeee + cnK(Q,tn) @(tn)] (c-2)

where t.,, t,, ... t ~ are subdivision points of the interval (a,b) and
the c¢'s are weighting coefficients. Both the number of subdivisions and
the values of weighting coefficients depend on the type of quadrature

formula used.

Let' x = t, for i=1,2,...n and denote @(ti) = ¢, and

F(ti) = F;. Hence from (c-2) we get n equations of the type
o, = F, + (b-a.) [clK(ti,tl) o, + ceK(ti,tg) Oy + e
+ cnK(ti,tn) @n] (c-3)

for i = 1,2,... 0.

This gives a system of n linear equations in the n unknowns @l,ée,
ERRPL P which can be solved. Substitute these values into (C-2) then

yields an approximate expression for ®&(x) in the whole interval.

When n-—w, the approximate expression for o(x) obtained by
this method tends to the solution of the integral equation (C-1) as a
1imit, provided only that this solution exists and is unique. Proof of
this may be found, for example, in the book by L. V. Kantorovich and

V. I. Krylov [38].
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